支持向量机SVM(3)-非线性支持向量机与核函数

本文详细介绍了非线性支持向量机(SVM)及其与核函数的关系。首先,讨论了非线性分类问题,通过变换将非线性问题转化为线性问题。接着,定义了核函数的概念,它是解决非线性问题的关键。文章还探讨了正定核的性质,解释了如何判断一个函数是否为正定核。此外,列举了一些常用的核函数,如多项式和高斯核函数,并介绍了字符串核函数在处理离散数据时的应用。最后,概述了非线性SVM的学习算法步骤。
摘要由CSDN通过智能技术生成

非线性支持向量机与核函数

本节包括以下内容

  • 1.非线性分类问题
  • 2.核函数的定义
  • 3.核技巧在支持向量机中的应用
  • 4.正定核    \; 核心问题:函数 K ( x , z ) K(x, z) K(x,z)满足什么条件才能称为核函数?
  • 5.常用核函数
  • 6.非线性支持向量机学习算法

1.非线性分类问题

非线性分类问题是指通过利用非线性模型才能很好地进行分类的问题。下图是一个例子,下图的左图是一个分类问题,由下图可见,无法用直线(线性模型)将正负实例正确分开,但可以用一条椭圆曲线(非线性模型将它们正确分开)。
对于给定的一个训练数据集 T = { ( x 1 , y 1 ) , ( x 2 , y 2 ) , ⋯   , ( x N , y N ) } T=\left\{\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \cdots,\left(x_{N}, y_{N}\right)\right\} T={ (x1,y1),(x2,y2),,(xN,yN)}其中实例 x i x_i xi属于输入空间, x i ∈ X = R n , y i ∈ Y = { + 1 , − 1 } , i = 1 , 2 , ⋯   , N x_{i} \in \mathcal{X}=\mathbf{R}^{n}, \quad y_{i} \in \mathcal{Y}=\{+1,-1\}, \quad i=1,2, \cdots, N xiX=Rn,yiY={ +1,1},i=1,2,,N y i y_i yi x i x_i xi的类标记,如果能用 R n R^n Rn中的一个超曲面将正负实例正确分开,则称这个问题为非线性可分问题

图片名称

非线性分类问题的求解思路:进行一个非线性变换,将非线性问题变换为线性问题,通过解变换后的线性问题求解原来的非线性问题.对于上图中的例子,通过变换,将左图中椭圆变换成右图中的直线,将非线性分类问题变换为线性分类问题。
符号推导如下
设原空间为 X ⊂ R 2 , x = ( x ( 1 ) , x ( 2 ) ) T ∈ X \mathcal{X} \subset \mathbf{R}^{2}, x=\left(x^{(1)}, x^{(2)}\right)^{\mathrm{T}} \in \mathcal{X} XR2,x=(x(1),x(2))TX,新空间为 Z ⊂ R 2 , z = ( z ( 1 ) , z ( 2 ) ) T ∈ Z \mathcal{Z} \subset \mathbf{R}^{2}, z=\left(z^{(1)}, z^{(2)}\right)^{T} \in \mathcal{Z} ZR2,z=(z(1),z(2))TZ,定义从原空间到新空间的变换(映射): z = ϕ ( x ) = ( ( x ( 1 ) ) 2 , ( x ( 2 ) ) 2 ) T z=\phi(x)=\left(\left(x^{(1)}\right)^{2},\left(x^{(2)}\right)^{2}\right)^{\mathrm{T}} z=ϕ(x)=((x(1))2,(x(2))2)T
经过变换 z = ϕ ( x ) z=\phi(x) z=ϕ(x),原空间 X ⊂ R 2 \mathcal{X} \subset \mathbf{R}^{2} XR2变换为新空间 Z ⊂ R 2 \mathcal{Z} \subset \mathbf{R}^{2} ZR2,原空间中的点相应地变换为新空间中的点,原空间中的椭圆
w 1 ( x ( 1 ) ) 2 + w 2 ( x ( 2 ) ) 2 + b = 0 w_{1}\left(x^{(1)}\right)^{2}+w_{2}\left(x^{(2)}\right)^{2}+b=0 w1(x(1))2+w2(x(2))2+b=0
变换为新空间中的直线 w 1 z ( 1 ) + w 2 z ( 2 ) + b = 0 w_{1} z^{(1)}+w_{2} z^{(2)}+b=0 w1z(1)+w2z(2)+b=0在变换后的新空间中,直线 w 1 z ( 1 ) + w 2 z ( 2 ) + b = 0 w_{1} z^{(1)}+w_{2} z^{(2)}+b=0 w1z(1)+w2z(2)+b=0可以将变换后的正负实例点正确分开.这样,原空间中的非线性可分问题就变成了新空间中的线性可分问题.

2.核函数的定义

定义6(核函数) X \mathcal{X} X是输入空间(欧氏空间 R n R^n Rn的子集或离散集合),又设 H \mathcal H H为特征空间(希尔伯特空间),如果存在一个 X \mathcal X X H \mathcal H H的映射 ϕ ( x ) : X → H \phi(x) : \mathcal{X} \rightarrow \mathcal{H} ϕ(x):XH使得对所有 x , z ∈ X x, z \in \mathcal{X} x,zX,函数 K ( x , z ) K(x, z) K(x,z)满足条件
K ( x , z ) = ϕ ( x ) ⋅ ϕ ( z ) K(x, z)=\phi(x) \cdot \phi(z) K(x,z)=ϕ(x)ϕ(z)则称 K ( x , z ) K(x, z) K(x,z)为核函数, ϕ ( x ) \phi(x) ϕ(x)为映射函数,式中 ϕ ( x ) ⋅ ϕ ( z ) \phi(x)\cdot\phi(z) ϕ(x)ϕ(z)为和 ϕ ( z ) \phi(z) ϕ(z)的内积。
以下为本节的最重要技术核技巧,核技巧巧妙地利用线性分类学习方法与核函数解决非线性问题的技术.
核技巧的思路:在学习和预测中只定义核函数 K ( x , z ) K(x, z) K(x,z),而不显式地定义映射函数 ϕ ( x ) \phi(x) ϕ(x).通常,直接计算 K ( x , z ) K(x, z) K(x,z)比较容易,而通过 ϕ ( x ) \phi(x) ϕ(x) ϕ ( z ) \phi(z) ϕ(z)计算 K ( x , z ) K(x, z) K(x,z)并不容易.注意,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值