... 这是一篇介绍BSP树的文章,原文在我U/L的 UGRPG.ZIP 中,因为我的 ... E文实在不怎么样,所以在只能在看过原文后,根据自己的理解写一篇 ... C文的(不是翻译),如果有什么BUG,请各位大虾多多Debug. :)
BSP 树 ------ 解释BSP树的运用,最好是从一个例子开始.设想一个很简单的DOOM关卡的例子.
A---------------------------------a----------------------------------B | | | | | | y | | d1 | | b1 | | f' | | | | | | | C--------------------f-----------------------D | | | | | | | | | | f" | | | | d | | b | | | | | | | | | e" e e' g' g g" | | d2 | | | | b2 | | | | | | | | | | | | | | E F | | | | x | | | | | | G---------------------------------c----------------------------------H
----c1---- ----------------------c2-------------------- -----c3-----
这个关卡由一个屋子套在另一个屋子里构成.玩家被封闭在矩形ABHG中. 先给出几个定义.(如图)
我们用矢量定义直线,所以
a = (A,B) e = (E,C) f = (C,D) g = (F,D)
当一个点在直线矢量方向的左边时,我们称点在直线的左边.
因此,在这个例子里,a的左边什么也没有;所有的东东都在它的右边.注意这些 依赖与我们对a的定义,如果我们定义 a = (B,A) 则所有的东东都在a的左边.
面是玩家看到的直线的一边.例如墙e,就有两个面(e'和e").不是所有的墙都有 两个面 -- 如果玩家只能看见墙的一面,那么这堵墙就只有一个面.
面是由矢量方向定义的,直线的两个面分别被称作左表面和右表面.
这个例子中的BSP树是这样的:
f / / / / / / a,d1,b1 e / / / / / / d2,c1 g / / / / / / c2 c3,b2
每个节点都是一条直线.所有在直线左边的东东都在它的左子树上,所有在它 右边的东东都在它的右子树上.
注意 d 面不是完全在 f 面的右边或左边.为了描述这种情况,我们把它分为 了两个部分,一个部分放在左子树,一部分放在右子树.因而,我们必须产生新 的面来构造BSP树.
我将在后面解释BSP数是怎样创建的.首先,我将给出使用BSP树来产生一幅画的方法.
假设玩家站在点'x',看着北方.
我们从树的顶端直线 f 开始.我们站在直线 f 的右边,所以我们向树的左子 树进行下去.这是因为我们想最先画最远的多边形.
我们来到了最左的节点.请在笔记本上记下节点上的东东--"a,d1,b1".
当我们不能再往下时,回到父节点.现在回到了根节点,我们还不能马上去右子树. 首先,我们看见了 f 面--写在这个节点上的.我们已经在我们列出的表上得到了 处在它后面的所有东东,我们还将看见它前面的东东,但是我们必须先把它记入我 们的表中.注意,f 面有两个表面--f' 和 f".既然我们已经知道我们处在直线 f 的右边,当然就只能看到它的右表面--所以我们在笔记本上记下 f".现在本子上 写着 a,d1,b1,f".
注意,如果我们是看着南方(视线远离 f 面),看不到 f 的任何一个面和 f 的那 一面后的所有东东.在这种情况下,我们就不必做前面这些.
现在我们向下到节点 e.我们在 e 的右边,所以要往左子树去,这样便得到了一个 叶节点.现在把 d2,c1 记下来.
再回来,看看该记下 e 的哪一面.应该是 e'.现在笔记本上写着 a,d1,b1,f",d2,c1,e'.
向右子树,来到 g 节点.我们在左边,所以向右得到 c3,b2,再回来,检查 g (我 们在左边,应为g'),去最后一个节点得到 c2,回溯,回溯,回溯,回到根节点,遍历 完成.
最后笔记本上写着:
a d1 b1 f" d2 c1 e' c3 b2 g' c2
如果我们以这个次序来画这些墙,将得到正确的图象.建议你使用3D-buffer而 不要用画家算法,这样速度要快的多.
创建 BSP 树 -----------
BSP树完全是递归创建的.唯一的困难是知道何时该停止递归.应该注意到叶节 点将被整个放入表中--因此将一组平面放在一个叶节点上的充分条件是它们能 够以任何次序画出来而不致有错.也就是说,无论玩家站在哪儿,这一组墙之间 都不会被别的挡住.
好吧,让我们开始:选择一个面 f (这个选择相当随便--最好是选一个面,它能 最少的分割其它面.当然,分割是不可避免的).分割 d 面和 b 面,因为它们被 直线 f 分开了.(用DOOM中的说法,去分割区域的线被称为节点线 _nodeline_ )
然后把 f 左边的东东放在左子树,右边也如此:
f / / / / / / a,d1,b1 b2,c,d2,e,g
我们可以不再处理左子树--因为墙 a,d1,b1 构成一个凸多边形,从任意角度 看它们都互不重叠.然而在另一边,平面 e 却使得从特定点去观察平面 d2 会 被其挡住,所以我们从 e 处分开,这就造成了平面 c 的分割,但是同样被分割 的平面 a 却不用被分割,这是因为 a 不在现在分析的平面中.
第二级 BSP 树为:
f / / / / / / a,d1,b1 e / / / / / / d2,c1 b2,c2,g
现在,c1 和 d2 从不重叠,顾而我们将它们作为另一个叶节点.下一步我们 从 g 处分开,将 c2 分成 c2 和 c3,剩下的节点都是叶节点.
下面这棵 BSP 树的最简单运用--再给一个例子来加深印象.考虑一下站在 y 点向北看的情况.因为看不到 f 面,你只用搜索左子树.这样马上就得到 了需要的循序: a,d1,b1.
精华 ----
如果我们在每个节点上为每个子树定义一个特定空间,记录子树中的信息, 这样我们就能以锥形视野比较这些信息将一些不可见的多边形截掉(屏幕 左边和右边的东东)--如果它们不相交,这样你就不必搜索整个子树.DOOM 就是这样做的,在一个巨大的 BSP 树中用特定空间储存了每一级的完整 (*entire*)信息.
下面是搜索 BSP 树的伪代码.函数 left() 当第二个输入矢量在第一个输 入矢量的左边时返回 TRUE.这就是两个矢量的点积,... ... Sorry,小D这一句不太明白 >This is a simple dot product, and by pre-calculating the slope of the >nodeline can be done with one multiply and one subtract.
vector player ; player's map position ; 玩家在地图上的位置矢量 vector left_sightline ; vector representing a ray cast through ; the left-most pixel of the screen ; 描述发射到屏幕最左边的光线的矢量 vector right_sightline ; the right-most pixel of the screen ; 描述发射到屏幕最右边的光线的矢量
structure node { vector vertex1 vector vertex2 node left_subtree node right_subtree face left_face face right_face box bounding_box bool terminal_node face terminal_node_faces[lots] }
recurse(node input)
if (cone defined by left and right sightlines does not intersect the node's bounding box) return fi
if node.terminal_node ; terminal node - add faces to list ; 叶节点--将平面填入表中 add(node.terminal_node_faces) return fi
if left(vertex2-vertex1,player-vertex1) ; player is to the left of the nodeline ; 玩家在节点线的左边 if not left(vertex2-vertex1,right_sightline) ; sight points right - we are looking at the face ; 视线指向右边--我们正看着这个面 recurse(node.right_subtree) add(node.left_face) fi ; now go down the left subtree ; 现在向左子树搜索 recurse(node.left_subtree) else ; player is to the right of the nodeline ; 玩家在节点线的右边 if left(vertex2-vertex1,left_sightline) ; sight points left - we are looking at the face ; 视线指向左边--我们正看着这个面 recurse(node.left_subtree) add(node.right_face) fi ; now go down the right subtree ; 现在向右子树搜索 recurse(node.right_subtree) fi
return
end recurse
这不是正规的代码--象数据结构之类的很多东东都没写. :)
... 希望有人看了好文章后,也介绍给大家,毕竟看E文狠头痛 :(
|
|
|