ubuntu20.04深度学习环境配置(自用基本转载)

本文档详述了在Ubuntu 20.04上配置深度学习环境的步骤,包括安装系统、修改下载源、安装Nvidia驱动、CUDA和cuDNN,以及Anaconda3和PyTorch。过程中提到了各种可能出现的问题及解决方案,如CUDA版本与驱动、PyTorch的兼容性等。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

基本上是参考集成其它哥们的教程带上自己坑点。主要参考:(22条消息) ubuntu20.04 下深度学习环境配置 史上最详细教程_ubuntu20.04做深度学习教程_来自γ星的赛亚人的博客-CSDN博客

新增:配置环境路上层层坑,主要参考已经除了起骨架作用外没太大的完整实践能力了,年轻人还是得先把理念搞清楚:Pytorch(GPU)配环境原理:cuda+cudnn+pytorch配环境的每一步到底干了些什么?_pytorch cudnn_中南大学苹果实验室的博客-CSDN博客

nvidia驱动 cuda 和cudnn部分的安装这篇也不错:

(24条消息) Ubuntu20.04下CUDA、cuDNN的详细安装与配置过程(图文)_ubuntu cudnn安装_嵌入式技术的博客-CSDN博客

以及抄代码的时候看好人家代码里操作的文件的版本和你自己下的是不是一个,cd路径等小白最常见的傻瓜问题

安装ubuntu

跳过

修改ubuntu下载源

主要参考的图形界面修改方法或者

以下是Ubuntu 20.04深度学习环境配置的教程: 1. 安装Nvidia显卡驱动 如果您的电脑使用的是Nvidia显卡,需要先安装Nvidia显卡驱动。可以通过以下命令安装: ``` sudo add-apt-repository ppa:graphics-drivers/ppa sudo apt update sudo apt install nvidia-driver-440 ``` 2. 安装CUDA CUDA是Nvidia开发的用于GPU加速的并行计算平台和编程模型。可以通过以下命令安装: ``` sudo apt install nvidia-cuda-toolkit ``` 安装完成后,可以通过以下命令检查CUDA是否安装成功: ``` nvcc --version ``` 3. 安装cuDNN cuDNN是Nvidia开发的深度神经网络加速库。可以通过以下步骤安装: - 访问Nvidia官网,下载对应版本的cuDNN文件(需要注册Nvidia开发者账号)。 - 解压下载的文件,并将文件夹复制到/usr/local/cuda目录下。 ``` sudo tar -xzvf cudnn-10.1-linux-x64-v7.6.5.32.tgz sudo cp -R cuda/include/* /usr/local/cuda/include/ sudo cp -R cuda/lib64/* /usr/local/cuda/lib64/ ``` 4. 安装Python和相关库 可以通过以下命令安装Python和相关库: ``` sudo apt install python3-dev python3-pip pip3 install numpy pandas matplotlib tensorflow keras ``` 5. 安装PyTorch PyTorch是一个基于Torch的Python开源机器学习库,它可以帮助研究人员和开发人员更快地构建深度学习模型。可以通过以下命令安装: ``` pip3 install torch torchvision ``` 6. 安装其他常用工具 可以通过以下命令安装其他常用工具: ``` sudo apt install git vim ``` 至此,Ubuntu 20.04深度学习环境配置完成。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值