4.5 微分几何中的张量算子
在微分几何中,张量算子被用来描述流形上的几何属性,例如曲率和扭曲。例如,黎曼曲率张量就是描述空间扭曲的一个关键对象,它在几何学中有广泛的应用。
4.5.1 黎曼度量张量(Riemannian Metric Tensor): g g g
定义
黎曼度量张量(Riemannian Metric Tensor) ,是在黎曼几何中定义的一种 二阶张量 , 用于定义流形上的距离、角度和体积 。在流形上,黎曼度量张量提供了一种 测量局部距离 的方法,它使得我们可以 定义曲线的长度、曲面的面积 等几何概念。
对于一个
n
n
n 维流形
M
M
M,黎曼度量张量
g
g
g 是一个对称的二阶协变张量场,它可以表示为:
g
=
g
i
j
d
x
i
⊗
d
x
j
g = g_{ij} dx^i \otimes dx^j
g=gijdxi⊗dxj
这里
g
i
j
g_{ij}
gij 是张量的分量,而
d
x
i
dx^i
dxi 和
d
x
j
dx^j
dxj 是坐标基底。度量张量必须是对称的,即
g
i
j
=
g
j
i
g_{ij} = g_{ji}
gij=gji,并且它是正定的,这意味着对于任何非零向量
v
v
v,都有
g
(
v
,
v
)
>
0
g(v,v) > 0
g(v,v)>0。
性质
- 对称性:黎曼度量张量是对称的,即 g i j = g j i g_{ij} = g_{ji} gij=gji。
- 正定性:度量张量是正定的,意味着对于任何非零向量 v v v, g ( v , v ) > 0 g(v,v) > 0 g(v,v)>0。
- 内积:黎曼度量张量可以用来定义流形上向量的内积,从而定义向量的长度和夹角。
- 诱导范数:通过度量张量可以定义向量的范数 ∣ ∣ v ∣ ∣ = g ( v , v ) ||v|| = \sqrt{g(v,v)} ∣∣v∣∣=g(v,v)。
- 逆度量张量:由于度量张量是正定的,所以它有一个逆 g i j g^{ij} gij,满足 g i k g k j = δ i j g_{ik}g^{kj} = \delta_i^j gikgkj=δij,其中 δ i j \delta_i^j δij 是克罗内克δ函数。
示例
考虑一个二维流形,例如一个嵌入在三维欧几里得空间中的曲面。假设这个曲面可以用参数化形式表示为:
x
(
u
,
v
)
=
(
x
(
u
,
v
)
,
y
(
u
,
v
)
,
z
(
u
,
v
)
)
\mathbf{x}(u,v) = (x(u,v), y(u,v), z(u,v))
x(u,v)=(x(u,v),y(u,v),z(u,v))
这里的
u
u
u 和
v
v
v 是参数。那么,该曲面上的度量张量可以通过下面的方式计算:
d
s
2
=
E
d
u
2
+
2
F
d
u
d
v
+
G
d
v
2
ds^2 = E du^2 + 2F du dv + G dv^2
ds2=Edu2+2Fdudv+Gdv2
其中,
E
=
<
∂
x
∂
u
,
∂
x
∂
u
>
E = \left<\frac{\partial \mathbf{x}}{\partial u}, \frac{\partial \mathbf{x}}{\partial u}\right>
E=⟨∂u∂x,∂u∂x⟩
F
=
<
∂
x
∂
u
,
∂
x
∂
v
>
F = \left<\frac{\partial \mathbf{x}}{\partial u}, \frac{\partial \mathbf{x}}{\partial v}\right>
F=⟨∂u∂x,∂v∂x⟩
G
=
<
∂
x
∂
v
,
∂
x
∂
v
>
G = \left<\frac{\partial \mathbf{x}}{\partial v}, \frac{\partial \mathbf{x}}{\partial v}\right>
G=⟨∂v∂x,∂v∂x⟩
这里
<
⋅
,
⋅
>
\left<\cdot, \cdot\right>
⟨⋅,⋅⟩ 表示向量的点积。度量张量的分量可以写为:
g
i
j
=
(
E
F
F
G
)
g_{ij} = \begin{pmatrix} E & F \\ F & G \end{pmatrix}
gij=(EFFG)
应用
黎曼度量张量在多个领域中都有广泛的应用,包括但不限于:
- 广义相对论:在爱因斯坦的广义相对论中,时空的几何结构是由四维黎曼度量张量来描述的。度量张量决定了时空的弯曲,从而影响物质的运动。
- 微分几何:在微分几何中,黎曼度量张量用于研究曲面和其他高维流形的几何属性,如曲率。
- 物理学:在凝聚态物理中,度量张量可以用来描述晶体结构中的缺陷。
- 信息几何:在信息理论中,黎曼度量张量可以用来定义概率分布之间的距离。
- 计算机视觉:在计算机视觉中,黎曼度量张量可以用来描述图像特征空间中的距离。
黎曼度量张量是理解流形几何和解决实际问题的重要工具,尤其是在需要精确描述空间结构和度量属性时。
4.5.2 黎曼曲率张量(Riemann Curvature Tensor): R i j k l R_{ijkl} Rijkl
定义
黎曼曲率张量(Riemann Curvature Tensor), 是 描述流形在任意点处的局部几何性质 的一个 四阶张量 。 它衡量了流形上的平行移动是否是可交换的过程 ,即两个不同的方向上的平行移动顺序改变后是否会影响最终的结果。黎曼曲率张量的存在表明,如果流形不是平坦的,则这种顺序的改变会导致不同的结果。
在
n
n
n 维黎曼流形
M
M
M 上,黎曼曲率张量可以表示为:
R
i
j
k
l
=
⟨
R
(
∂
i
,
∂
j
)
∂
k
,
∂
l
⟩
R_{ijkl} = \langle R(\partial_i, \partial_j)\partial_k, \partial_l \rangle
Rijkl=⟨R(∂i,∂j)∂k,∂l⟩
这里
R
R
R 是曲率算子,
∂
i
\partial_i
∂i 是局部坐标系中的偏导数算子,
⟨
⋅
,
⋅
⟩
\langle \cdot, \cdot \rangle
⟨⋅,⋅⟩ 表示由黎曼度量张量定义的内积。
更具体地说,黎曼曲率张量可以表示为:
R
i
j
k
l
=
∂
Γ
i
l
m
∂
x
j
−
∂
Γ
i
j
m
∂
x
l
+
Γ
i
l
p
Γ
j
p
m
−
Γ
i
j
p
Γ
l
p
m
R_{ijkl} = \frac{\partial \Gamma_{il}^m}{\partial x^j} - \frac{\partial \Gamma_{ij}^m}{\partial x^l} + \Gamma_{il}^p \Gamma_{jp}^m - \Gamma_{ij}^p \Gamma_{lp}^m
Rijkl=∂xj∂Γilm−∂xl∂Γijm+ΓilpΓjpm−ΓijpΓlpm
这里
Γ
i
j
k
\Gamma_{ij}^k
Γijk 是联系系数(Christoffel 符号)。
性质
-
反对称性:黎曼曲率张量在前两个指标上反对称,也在最后两个指标上反对称:
R i j k l = − R j i k l R_{ijkl} = -R_{jikl} Rijkl=−Rjikl
R i j k l = − R i j l k R_{ijkl} = -R_{ijlk} Rijkl=−Rijlk -
第一 Bianchi 恒等式:黎曼曲率张量满足第一个 Bianchi 恒等式:
R i j k l + R j k i l + R k i j l = 0 R_{ijkl} + R_{jkil} + R_{kijl} = 0 Rijkl+Rjkil+Rkijl=0 -
第二 Bianchi 恒等式:黎曼曲率张量还满足第二个 Bianchi 恒等式,即曲率张量的协变导数的循环和为零:
∇ m R i j k l + ∇ j R i m k l + ∇ i R j m k l = 0 \nabla_m R_{ijkl} + \nabla_j R_{imkl} + \nabla_i R_{jmk l} = 0 ∇mRijkl+∇jRimkl+∇iRjmkl=0
示例
考虑一个简单的例子,即二维球面
S
2
S^2
S2 的黎曼曲率张量。球面可以用极坐标参数化,设半径为
R
R
R,则参数化为:
x
(
θ
,
ϕ
)
=
(
R
sin
θ
cos
ϕ
,
R
sin
θ
sin
ϕ
,
R
cos
θ
)
\mathbf{x}(\theta, \phi) = (R \sin \theta \cos \phi, R \sin \theta \sin \phi, R \cos \theta)
x(θ,ϕ)=(Rsinθcosϕ,Rsinθsinϕ,Rcosθ)
在这个参数化下,度量张量为:
g
θ
θ
=
R
2
g_{\theta\theta} = R^2
gθθ=R2
g
ϕ
ϕ
=
R
2
sin
2
θ
g_{\phi\phi} = R^2 \sin^2 \theta
gϕϕ=R2sin2θ
g
θ
ϕ
=
g
ϕ
θ
=
0
g_{\theta\phi} = g_{\phi\theta} = 0
gθϕ=gϕθ=0
计算 Christoffel 符号
Γ
i
j
k
\Gamma_{ij}^k
Γijk 和黎曼曲率张量
R
i
j
k
l
R_{ijkl}
Rijkl 的非零分量:
R
θ
ϕ
θ
ϕ
=
sin
2
θ
R_{\theta \phi \theta \phi} = \sin^2 \theta
Rθϕθϕ=sin2θ
R
ϕ
θ
ϕ
θ
=
−
sin
2
θ
R_{\phi \theta \phi \theta} = -\sin^2 \theta
Rϕθϕθ=−sin2θ
由于球面的对称性和反对称性,这是唯一的独立非零分量。
应用
黎曼曲率张量在多个领域中都有广泛的应用,包括但不限于:
- 广义相对论:在爱因斯坦的广义相对论中,黎曼曲率张量是描述时空弯曲的基本对象。爱因斯坦场方程将时空的曲率与物质能量分布联系起来。
- 微分几何:在微分几何中,黎曼曲率张量用于研究流形的几何属性,如曲率半径、曲率张量的不变量等。
- 拓扑学:在拓扑学中,黎曼曲率张量帮助理解流形的拓扑性质。
- 材料科学:在研究材料的微观结构时,曲率张量可以用来描述晶格缺陷。
- 计算机图形学:在计算机图形学中,黎曼曲率张量可以用来更好地理解和模拟曲面的形状。
黎曼曲率张量是描述非欧几里得几何结构的重要工具,特别是在需要量化空间弯曲程度和研究其影响时。
4.6 广义相对论中的张量算子
4.6.1 度规张量(Metric Tensor): g g g (同5.5.1)
定义
度规张量(Metric Tensor),又称黎曼度量张量 ,是在黎曼几何中定义的一种二阶张量,用于在流形上定义距离、角度和体积。它为流形上的点赋予了局部几何属性,使得我们可以讨论流形上的长度、角度和面积等概念。
在
n
n
n 维流形
M
M
M 上,度规张量
g
g
g 是一个 对称的二阶协变张量场 ,它可以表示为:
g
=
g
i
j
d
x
i
⊗
d
x
j
g = g_{ij} dx^i \otimes dx^j
g=gijdxi⊗dxj
其中
g
i
j
g_{ij}
gij 是张量的分量,
d
x
i
dx^i
dxi 和
d
x
j
dx^j
dxj 是坐标基底的一阶形式。
性质
- 对称性:度规张量是对称的,即 g i j = g j i g_{ij} = g_{ji} gij=gji。
- 正定性:度规张量是正定的,这意味着对于任何非零向量 v v v,都有 g ( v , v ) > 0 g(v,v) > 0 g(v,v)>0。
- 内积:度规张量可以用来定义流形上向量的内积,从而定义向量的长度和夹角。
- 诱导范数:通过度规张量可以定义向量的范数 ∣ ∣ v ∣ ∣ = g ( v , v ) ||v|| = \sqrt{g(v,v)} ∣∣v∣∣=g(v,v)。
- 逆度规张量:由于度规张量是正定的,所以它有一个逆 g i j g^{ij} gij,满足 g i k g k j = δ i j g_{ik}g^{kj} = \delta_i^j gikgkj=δij,其中 δ i j \delta_i^j δij 是克罗内克δ函数。
示例
考虑一个二维流形,例如一个嵌入在三维欧几里得空间中的曲面。假设这个曲面可以用参数化形式表示为:
x
(
u
,
v
)
=
(
x
(
u
,
v
)
,
y
(
u
,
v
)
,
z
(
u
,
v
)
)
\mathbf{x}(u,v) = (x(u,v), y(u,v), z(u,v))
x(u,v)=(x(u,v),y(u,v),z(u,v))
这里的
u
u
u 和
v
v
v 是参数。那么,该曲面上的度规张量可以通过下面的方式计算:
d
s
2
=
E
d
u
2
+
2
F
d
u
d
v
+
G
d
v
2
ds^2 = E du^2 + 2F du dv + G dv^2
ds2=Edu2+2Fdudv+Gdv2
其中,
E
=
<
∂
x
∂
u
,
∂
x
∂
u
>
E = \left<\frac{\partial \mathbf{x}}{\partial u}, \frac{\partial \mathbf{x}}{\partial u}\right>
E=⟨∂u∂x,∂u∂x⟩
F
=
<
∂
x
∂
u
,
∂
x
∂
v
>
F = \left<\frac{\partial \mathbf{x}}{\partial u}, \frac{\partial \mathbf{x}}{\partial v}\right>
F=⟨∂u∂x,∂v∂x⟩
G
=
<
∂
x
∂
v
,
∂
x
∂
v
>
G = \left<\frac{\partial \mathbf{x}}{\partial v}, \frac{\partial \mathbf{x}}{\partial v}\right>
G=⟨∂v∂x,∂v∂x⟩
这里
<
⋅
,
⋅
>
\left<\cdot, \cdot\right>
⟨⋅,⋅⟩ 表示向量的点积。度规张量的分量可以写为:
g
i
j
=
(
E
F
F
G
)
g_{ij} = \begin{pmatrix} E & F \\ F & G \end{pmatrix}
gij=(EFFG)
应用
度规张量在多个领域中都有广泛的应用,包括但不限于:
- 广义相对论:在爱因斯坦的广义相对论中,时空的几何结构是由四维度规张量来描述的。度规张量决定了时空的弯曲,从而影响物质的运动。
- 微分几何:在微分几何中,度规张量用于研究曲面和其他高维流形的几何属性,如曲率和测地线。
- 物理学:在凝聚态物理中,度规张量可以用来描述晶体结构中的缺陷。
- 信息几何:在信息理论中,度规张量可以用来定义概率分布之间的距离。
- 计算机视觉:在计算机视觉中,度规张量可以用来描述图像特征空间中的距离。
- 数值分析:在数值分析中,度规张量可以用来优化算法,尤其是在需要考虑几何约束的问题中。
度规张量是理解流形几何和解决实际问题的重要工具,特别是在需要精确描述空间结构和度量属性时。度规张量的概念不仅在纯数学中有重要意义,在应用科学和技术领域也有着不可或缺的作用。
4.6.2 里奇张量(Ricci Tensor): R i j R_{ij} Rij
定义
里奇张量(Ricci Tensor) ,是从黎曼曲率张量中提取出来的一个 对称二阶张量 ,也即 黎曼曲率张量的缩并(contraction) 。它反映了流形在局部上的平均曲率,是 描述时空曲率 的一个重要量, 表示物质对时空的影响 。里奇张量在黎曼几何和广义相对论中起着核心作用。给定一个
n
n
n 维流形
M
M
M 和其上的度规张量
g
g
g,里奇张量
R
i
j
R_{ij}
Rij 可以通过对黎曼曲率张量
R
i
j
k
l
R_{ijkl}
Rijkl 进行缩并(contraction)来定义:
R
i
j
=
R
i
i
k
k
=
g
k
l
R
i
k
j
l
R_{ij} = R^k_{\ iik} = g^{kl} R_{ikjl}
Rij=R iikk=gklRikjl
这里 g k l g^{kl} gkl 是度规张量 g k l g_{kl} gkl 的逆,而 R i k j l R_{ikjl} Rikjl 是黎曼曲率张量。缩并过程实质上是求和,把两个指标 k k k 和 l l l 相匹配,并用度规张量的逆来提升一个指标。
性质
- 对称性:里奇张量是对称的,即 R i j = R j i R_{ij} = R_{ji} Rij=Rji。
- 迹:里奇张量的迹(trace)称为标量曲率
R
R
R,定义为:
R = g i j R i j R = g^{ij} R_{ij} R=gijRij - 爱因斯坦方程:在广义相对论中,里奇张量与物质的能量-动量张量
T
i
j
T_{ij}
Tij 通过爱因斯坦方程联系起来:
R i j − 1 2 R g i j + Λ g i j = 8 π G c 4 T i j R_{ij} - \frac{1}{2} R g_{ij} + \Lambda g_{ij} = \frac{8\pi G}{c^4} T_{ij} Rij−21Rgij+Λgij=c48πGTij
其中 Λ \Lambda Λ 是宇宙常数, G G G 是引力常数, c c c 是光速。
示例
考虑一个简单的例子,即二维球面
S
2
S^2
S2 的里奇张量。球面可以用极坐标参数化,设半径为
R
R
R,则参数化为:
x
(
θ
,
ϕ
)
=
(
R
sin
θ
cos
ϕ
,
R
sin
θ
sin
ϕ
,
R
cos
θ
)
\mathbf{x}(\theta, \phi) = (R \sin \theta \cos \phi, R \sin \theta \sin \phi, R \cos \theta)
x(θ,ϕ)=(Rsinθcosϕ,Rsinθsinϕ,Rcosθ)
在这个参数化下,度量张量为:
g
θ
θ
=
R
2
g_{\theta\theta} = R^2
gθθ=R2
g
ϕ
ϕ
=
R
2
sin
2
θ
g_{\phi\phi} = R^2 \sin^2 \theta
gϕϕ=R2sin2θ
g
θ
ϕ
=
g
ϕ
θ
=
0
g_{\theta\phi} = g_{\phi\theta} = 0
gθϕ=gϕθ=0
计算黎曼曲率张量的非零分量:
R
θ
ϕ
θ
ϕ
=
sin
2
θ
R_{\theta \phi \theta \phi} = \sin^2 \theta
Rθϕθϕ=sin2θ
通过缩并得到里奇张量的非零分量:
R
θ
θ
=
1
R
2
R_{\theta \theta} = \frac{1}{R^2}
Rθθ=R21
R
ϕ
ϕ
=
sin
2
θ
R
2
R_{\phi \phi} = \frac{\sin^2 \theta}{R^2}
Rϕϕ=R2sin2θ
因为里奇张量是对称的,所以我们只需要计算这两个分量。可以看出,里奇张量的分量与球面的半径 R R R 成反比。
应用
里奇张量在多个领域中都有广泛的应用,包括但不限于:
- 广义相对论:在爱因斯坦的广义相对论中,里奇张量是描述时空曲率的关键对象。爱因斯坦场方程将时空的曲率与物质能量分布联系起来,里奇张量在其中起到了核心作用。
- 微分几何:在微分几何中,里奇张量用于研究流形的几何属性,如平均曲率、曲率半径等。
- 拓扑学:在拓扑学中,里奇张量帮助理解流形的拓扑性质。
- 材料科学:在研究材料的微观结构时,里奇张量可以用来描述晶格缺陷对材料性能的影响。
- 计算机图形学:在计算机图形学中,里奇张量可以用来更好地理解和模拟曲面的形状,尤其是在曲面重构和网格优化中。
里奇张量是描述非欧几里得几何结构的重要工具,特别是在需要量化空间弯曲程度和研究其影响时。
4.6.3 爱因斯坦张量(Einstein Tensor): G μ ν G_{\mu\nu} Gμν
定义
爱因斯坦张量(Einstein Tensor),是一个二阶张量,由里奇张量和度规张量构成,在广义相对论中起着核心作用。它直接关联了时空的几何结构与物质分布,是爱因斯坦场方程中的几何部分。 爱因斯坦张量
G
μ
ν
G_{\mu\nu}
Gμν 定义为:
G
μ
ν
=
R
μ
ν
−
1
2
R
g
μ
ν
G_{\mu\nu} = R_{\mu\nu} - \frac{1}{2} R g_{\mu\nu}
Gμν=Rμν−21Rgμν
其中
R
μ
ν
R_{\mu\nu}
Rμν 是里奇张量,
R
R
R 是标量曲率(里奇张量的迹),而
g
μ
ν
g_{\mu\nu}
gμν 是度规张量。
性质
- 对称性:爱因斯坦张量是对称的,即 G μ ν = G ν μ G_{\mu\nu} = G_{\nu\mu} Gμν=Gνμ。
- 迹:爱因斯坦张量的迹为零,即 g μ ν G μ ν = 0 g^{\mu\nu} G_{\mu\nu} = 0 gμνGμν=0。
- 守恒律:在真空情况下(没有物质源),爱因斯坦张量满足协变守恒律:
∇ μ G μ ν = 0 \nabla^\mu G_{\mu\nu} = 0 ∇μGμν=0
这意味着在没有物质源的情况下,时空的曲率是自我封闭的。
示例
考虑一个简单的例子,即四维时空中的弗里德曼-勒梅特-罗伯逊-沃尔克(FLRW)度规,这是一种常用于描述均匀各向同性的宇宙模型的度规。在共动坐标系下,FLRW 度规可以写作:
d
s
2
=
−
d
t
2
+
a
(
t
)
2
(
d
r
2
1
−
k
r
2
+
r
2
(
d
θ
2
+
sin
2
θ
d
ϕ
2
)
)
ds^2 = -dt^2 + a(t)^2 \left( \frac{dr^2}{1-kr^2} + r^2 (d\theta^2 + \sin^2\theta d\phi^2) \right)
ds2=−dt2+a(t)2(1−kr2dr2+r2(dθ2+sin2θdϕ2))
其中
a
(
t
)
a(t)
a(t) 是尺度因子,
k
k
k 是空间曲率参数。
在这个度规下,我们可以计算出里奇张量和标量曲率。对于 FLRW 度规,里奇张量的非零分量为:
R
t
t
=
3
(
a
˙
2
+
k
c
2
a
2
)
R_{tt} = 3\left(\frac{\dot{a}^2 + kc^2}{a^2}\right)
Rtt=3(a2a˙2+kc2)
R
r
r
=
−
(
a
¨
a
+
2
a
˙
2
+
2
k
c
2
a
2
)
R_{rr} = -\left(\frac{\ddot{a}}{a} + \frac{2\dot{a}^2 + 2kc^2}{a^2}\right)
Rrr=−(aa¨+a22a˙2+2kc2)
R
θ
θ
=
−
r
2
(
a
¨
a
+
a
˙
2
+
k
c
2
a
2
)
R_{\theta\theta} = -r^2\left(\frac{\ddot{a}}{a} + \frac{\dot{a}^2 + kc^2}{a^2}\right)
Rθθ=−r2(aa¨+a2a˙2+kc2)
R
ϕ
ϕ
=
−
r
2
sin
2
θ
(
a
¨
a
+
a
˙
2
+
k
c
2
a
2
)
R_{\phi\phi} = -r^2 \sin^2\theta \left(\frac{\ddot{a}}{a} + \frac{\dot{a}^2 + kc^2}{a^2}\right)
Rϕϕ=−r2sin2θ(aa¨+a2a˙2+kc2)
标量曲率为:
R
=
6
(
a
¨
a
+
a
˙
2
+
k
c
2
a
2
)
R = 6\left(\frac{\ddot{a}}{a} + \frac{\dot{a}^2 + kc^2}{a^2}\right)
R=6(aa¨+a2a˙2+kc2)
由此可以构造出爱因斯坦张量
G
μ
ν
G_{\mu\nu}
Gμν:
G
t
t
=
R
t
t
−
1
2
R
g
t
t
=
3
(
a
˙
2
+
k
c
2
a
2
)
−
1
2
(
6
(
a
¨
a
+
a
˙
2
+
k
c
2
a
2
)
)
G_{tt} = R_{tt} - \frac{1}{2} R g_{tt} = 3\left(\frac{\dot{a}^2 + kc^2}{a^2}\right) - \frac{1}{2} \left(6\left(\frac{\ddot{a}}{a} + \frac{\dot{a}^2 + kc^2}{a^2}\right)\right)
Gtt=Rtt−21Rgtt=3(a2a˙2+kc2)−21(6(aa¨+a2a˙2+kc2))
G
r
r
=
R
r
r
−
1
2
R
g
r
r
=
−
(
a
¨
a
+
2
a
˙
2
+
2
k
c
2
a
2
)
−
1
2
(
6
(
a
¨
a
+
a
˙
2
+
k
c
2
a
2
)
)
G_{rr} = R_{rr} - \frac{1}{2} R g_{rr} = -\left(\frac{\ddot{a}}{a} + \frac{2\dot{a}^2 + 2kc^2}{a^2}\right) - \frac{1}{2} \left(6\left(\frac{\ddot{a}}{a} + \frac{\dot{a}^2 + kc^2}{a^2}\right)\right)
Grr=Rrr−21Rgrr=−(aa¨+a22a˙2+2kc2)−21(6(aa¨+a2a˙2+kc2))
G
θ
θ
=
R
θ
θ
−
1
2
R
g
θ
θ
=
−
r
2
(
a
¨
a
+
a
˙
2
+
k
c
2
a
2
)
−
1
2
(
6
(
a
¨
a
+
a
˙
2
+
k
c
2
a
2
)
)
G_{\theta\theta} = R_{\theta\theta} - \frac{1}{2} R g_{\theta\theta} = -r^2\left(\frac{\ddot{a}}{a} + \frac{\dot{a}^2 + kc^2}{a^2}\right) - \frac{1}{2} \left(6\left(\frac{\ddot{a}}{a} + \frac{\dot{a}^2 + kc^2}{a^2}\right)\right)
Gθθ=Rθθ−21Rgθθ=−r2(aa¨+a2a˙2+kc2)−21(6(aa¨+a2a˙2+kc2))
G
ϕ
ϕ
=
R
ϕ
ϕ
−
1
2
R
g
ϕ
ϕ
=
−
r
2
sin
2
θ
(
a
¨
a
+
a
˙
2
+
k
c
2
a
2
)
−
1
2
(
6
(
a
¨
a
+
a
˙
2
+
k
c
2
a
2
)
)
G_{\phi\phi} = R_{\phi\phi} - \frac{1}{2} R g_{\phi\phi} = -r^2 \sin^2\theta \left(\frac{\ddot{a}}{a} + \frac{\dot{a}^2 + kc^2}{a^2}\right) - \frac{1}{2} \left(6\left(\frac{\ddot{a}}{a} + \frac{\dot{a}^2 + kc^2}{a^2}\right)\right)
Gϕϕ=Rϕϕ−21Rgϕϕ=−r2sin2θ(aa¨+a2a˙2+kc2)−21(6(aa¨+a2a˙2+kc2))
根据之前的计算,我们可以简化爱因斯坦张量 G μ ν G_{\mu\nu} Gμν 的各个分量。
G t t = 3 ( a ˙ 2 + k c 2 a 2 ) − 3 ( a ¨ a + a ˙ 2 + k c 2 a 2 ) = − 3 a ¨ a G_{tt} = 3\left(\frac{\dot{a}^2 + kc^2}{a^2}\right) - 3\left(\frac{\ddot{a}}{a} + \frac{\dot{a}^2 + kc^2}{a^2}\right) = -3\frac{\ddot{a}}{a} Gtt=3(a2a˙2+kc2)−3(aa¨+a2a˙2+kc2)=−3aa¨
G r r = − ( a ¨ a + 2 a ˙ 2 + 2 k c 2 a 2 ) − 3 ( a ¨ a + a ˙ 2 + k c 2 a 2 ) = − 2 a ¨ a − 2 a ˙ 2 + k c 2 a 2 G_{rr} = -\left(\frac{\ddot{a}}{a} + \frac{2\dot{a}^2 + 2kc^2}{a^2}\right) - 3\left(\frac{\ddot{a}}{a} + \frac{\dot{a}^2 + kc^2}{a^2}\right) = -2\frac{\ddot{a}}{a} - 2\frac{\dot{a}^2 + kc^2}{a^2} Grr=−(aa¨+a22a˙2+2kc2)−3(aa¨+a2a˙2+kc2)=−2aa¨−2a2a˙2+kc2
G θ θ = − r 2 ( a ¨ a + a ˙ 2 + k c 2 a 2 ) − 3 r 2 ( a ¨ a + a ˙ 2 + k c 2 a 2 ) = − 4 r 2 ( a ¨ a + a ˙ 2 + k c 2 a 2 ) G_{\theta\theta} = -r^2\left(\frac{\ddot{a}}{a} + \frac{\dot{a}^2 + kc^2}{a^2}\right) - 3r^2\left(\frac{\ddot{a}}{a} + \frac{\dot{a}^2 + kc^2}{a^2}\right) = -4r^2\left(\frac{\ddot{a}}{a} + \frac{\dot{a}^2 + kc^2}{a^2}\right) Gθθ=−r2(aa¨+a2a˙2+kc2)−3r2(aa¨+a2a˙2+kc2)=−4r2(aa¨+a2a˙2+kc2)
G ϕ ϕ = − r 2 sin 2 θ ( a ¨ a + a ˙ 2 + k c 2 a 2 ) − 3 r 2 sin 2 θ ( a ¨ a + a ˙ 2 + k c 2 a 2 ) = − 4 r 2 sin 2 θ ( a ¨ a + a ˙ 2 + k c 2 a 2 ) G_{\phi\phi} = -r^2 \sin^2\theta \left(\frac{\ddot{a}}{a} + \frac{\dot{a}^2 + kc^2}{a^2}\right) - 3r^2 \sin^2\theta \left(\frac{\ddot{a}}{a} + \frac{\dot{a}^2 + kc^2}{a^2}\right) = -4r^2 \sin^2\theta \left(\frac{\ddot{a}}{a} + \frac{\dot{a}^2 + kc^2}{a^2}\right) Gϕϕ=−r2sin2θ(aa¨+a2a˙2+kc2)−3r2sin2θ(aa¨+a2a˙2+kc2)=−4r2sin2θ(aa¨+a2a˙2+kc2)
简化后的最终结果为:
G t t = − 3 a ¨ a G_{tt} = -3\frac{\ddot{a}}{a} Gtt=−3aa¨
G r r = − 2 ( a ¨ a + a ˙ 2 + k c 2 a 2 ) G_{rr} = -2\left(\frac{\ddot{a}}{a} + \frac{\dot{a}^2 + kc^2}{a^2}\right) Grr=−2(aa¨+a2a˙2+kc2)
G θ θ = − 4 r 2 ( a ¨ a + a ˙ 2 + k c 2 a 2 ) G_{\theta\theta} = -4r^2\left(\frac{\ddot{a}}{a} + \frac{\dot{a}^2 + kc^2}{a^2}\right) Gθθ=−4r2(aa¨+a2a˙2+kc2)
G ϕ ϕ = − 4 r 2 sin 2 θ ( a ¨ a + a ˙ 2 + k c 2 a 2 ) G_{\phi\phi} = -4r^2 \sin^2\theta \left(\frac{\ddot{a}}{a} + \frac{\dot{a}^2 + kc^2}{a^2}\right) Gϕϕ=−4r2sin2θ(aa¨+a2a˙2+kc2)
这些结果展示了爱因斯坦张量 G μ ν G_{\mu\nu} Gμν 在 FLRW 度规下的具体形式。
4.7 量子场论中的张量算子
4.7.1 拉格朗日量(Lagrangian): L L L
定义
拉格朗日量(Lagrangian) ,是经典力学和量子场论中 描述物理系统动态行为的标量函数 。通常表示为
L
L
L,并且是系统动能
T
T
T 减去势能
V
V
V 的差:
L
=
T
−
V
L = T - V
L=T−V
在经典力学中,拉格朗日量是一个关于广义坐标
q
i
q_i
qi 和广义速度
q
˙
i
\dot{q}_i
q˙i 的函数:
L
(
q
i
,
q
˙
i
,
t
)
L(q_i, \dot{q}_i, t)
L(qi,q˙i,t)
在场论中,拉格朗日量可以是关于场
ϕ
\phi
ϕ 和其一阶偏导数
∂
μ
ϕ
\partial_\mu \phi
∂μϕ 的函数:
L
(
ϕ
,
∂
μ
ϕ
,
x
)
\mathcal{L}(\phi, \partial_\mu \phi, x)
L(ϕ,∂μϕ,x)
性质
-
哈密顿原理:拉格朗日量通过哈密顿原理(也称作最小作用量原理)来确定物理系统的实际路径。根据哈密顿原理,物理系统的实际路径是使作用量 S S S 极值化的路径,其中作用量定义为拉格朗日量沿路径的积分:
S = ∫ L d t S = \int L \, dt S=∫Ldt -
拉格朗日方程:拉格朗日量可以用来导出系统的运动方程,即拉格朗日方程:
d d t ( ∂ L ∂ q ˙ i ) − ∂ L ∂ q i = 0 \frac{d}{dt} \left( \frac{\partial L}{\partial \dot{q}_i} \right) - \frac{\partial L}{\partial q_i} = 0 dtd(∂q˙i∂L)−∂qi∂L=0
对于场论中的拉格朗日量,相应的方程称为欧拉-拉格朗日方程:
∂ L ∂ ϕ − ∂ μ ( ∂ L ∂ ( ∂ μ ϕ ) ) = 0 \frac{\partial \mathcal{L}}{\partial \phi} - \partial_\mu \left( \frac{\partial \mathcal{L}}{\partial (\partial_\mu \phi)} \right) = 0 ∂ϕ∂L−∂μ(∂(∂μϕ)∂L)=0 -
守恒定律:根据诺特定理,如果拉格朗日量对某个坐标或其时间导数的偏导数不变,则对应的广义动量或能量是守恒的。
示例
经典力学中的拉格朗日量
考虑一个单摆的例子。设摆长为
l
l
l,摆锤的质量为
m
m
m,摆角为
θ
\theta
θ,则拉格朗日量可以表示为:
L
=
T
−
V
=
1
2
m
l
2
θ
˙
2
−
m
g
l
(
1
−
cos
θ
)
L = T - V = \frac{1}{2} m l^2 \dot{\theta}^2 - mgl(1-\cos \theta)
L=T−V=21ml2θ˙2−mgl(1−cosθ)
这里
θ
˙
\dot{\theta}
θ˙ 是摆角的时间导数(角速度),
g
g
g 是重力加速度。
场论中的拉格朗日量
考虑一个标量场
ϕ
\phi
ϕ 的自由场拉格朗日量,它描述了一个没有相互作用的标量场:
L
=
1
2
∂
μ
ϕ
∂
μ
ϕ
−
1
2
m
2
ϕ
2
\mathcal{L} = \frac{1}{2} \partial_\mu \phi \partial^\mu \phi - \frac{1}{2} m^2 \phi^2
L=21∂μϕ∂μϕ−21m2ϕ2
这里
∂
μ
ϕ
\partial_\mu \phi
∂μϕ 是场的偏导数,
m
m
m 是场的质量。
应用
拉格朗日量在多个领域中都有广泛的应用,包括但不限于:
-
经典力学:在经典力学中,拉格朗日量被用来导出系统的运动方程,如拉格朗日方程。这种方法特别适用于处理带有约束的系统。
-
量子力学:在量子力学中,拉格朗日量被用来构建量子化系统的哈密顿量,并且在路径积分表述中作为权重因子的一部分。
-
量子场论:在量子场论中,拉格朗日量被用来描述基本粒子之间的相互作用。通过拉格朗日量可以导出粒子的运动方程和相互作用顶点。
-
统计力学:在统计力学中,拉格朗日量可以用来描述系统在热力学极限下的行为。
-
控制理论:在控制理论中,拉格朗日量可以用来优化控制系统的行为,通过最小化或最大化某个目标函数来设计控制器。
-
广义相对论:在广义相对论中,爱因斯坦-希尔伯特作用量是描述时空几何的拉格朗日量,通过它可以导出爱因斯坦场方程。
拉格朗日量不仅是理论物理中的基础概念,而且在现代物理学和工程学中都有着极其重要的地位,是理解和解决物理系统动态行为的关键工具。
4.7.2 哈密顿量(Hamiltonian): H H H
定义
哈密顿量(Hamiltonian) ,是 一个物理系统总能量 的函数表示形式,通常表示为 H H H。
在经典力学中,哈密顿量是系统的总能量,可以视为广义动量
p
i
p_i
pi 和广义坐标
q
i
q_i
qi 的函数:
H
(
q
i
,
p
i
,
t
)
H(q_i, p_i, t)
H(qi,pi,t)
在量子力学中,哈密顿量是一个算子,表示系统的总能量,并且通常是关于位置算子
q
^
i
\hat{q}_i
q^i 和动量算子
p
^
i
\hat{p}_i
p^i 的函数:
H
^
(
q
^
i
,
p
^
i
,
t
)
\hat{H}(\hat{q}_i, \hat{p}_i, t)
H^(q^i,p^i,t)
性质
-
哈密顿方程:哈密顿量可以通过哈密顿方程来描述系统的运动:
q ˙ i = ∂ H ∂ p i \dot{q}_i = \frac{\partial H}{\partial p_i} q˙i=∂pi∂H
p ˙ i = − ∂ H ∂ q i \dot{p}_i = -\frac{\partial H}{\partial q_i} p˙i=−∂qi∂H
这些方程表明广义坐标的变化率与广义动量对哈密顿量的偏导数有关,而广义动量的变化率与广义坐标对哈密顿量的偏导数的负值有关。 -
能量守恒:如果哈密顿量不显式地依赖于时间(即 ∂ H ∂ t = 0 \frac{\partial H}{\partial t} = 0 ∂t∂H=0 ),则系统的总能量是守恒的。
-
泊松括号:哈密顿量可以通过泊松括号的形式来表达系统的演化:
d f d t = { f , H } + ∂ f ∂ t \frac{df}{dt} = \{f, H\} + \frac{\partial f}{\partial t} dtdf={f,H}+∂t∂f
其中 f f f 是一个动态变量, { f , H } \{f, H\} {f,H} 表示 f f f 和 H H H 的泊松括号。
示例
经典力学中的哈密顿量
考虑一个单摆的例子。设摆长为
l
l
l,摆锤的质量为
m
m
m,摆角为
θ
\theta
θ,则系统的拉格朗日量为:
L
=
T
−
V
=
1
2
m
l
2
θ
˙
2
−
m
g
l
(
1
−
cos
θ
)
L = T - V = \frac{1}{2} m l^2 \dot{\theta}^2 - mgl(1-\cos \theta)
L=T−V=21ml2θ˙2−mgl(1−cosθ)
为了得到哈密顿量,我们首先计算广义动量:
p
θ
=
∂
L
∂
θ
˙
=
m
l
2
θ
˙
p_\theta = \frac{\partial L}{\partial \dot{\theta}} = ml^2 \dot{\theta}
pθ=∂θ˙∂L=ml2θ˙
然后,我们通过变换得到哈密顿量:
H
=
p
θ
θ
˙
−
L
=
m
l
2
θ
˙
2
−
(
1
2
m
l
2
θ
˙
2
−
m
g
l
(
1
−
cos
θ
)
)
H = p_\theta \dot{\theta} - L = ml^2 \dot{\theta}^2 - \left( \frac{1}{2} ml^2 \dot{\theta}^2 - mgl(1-\cos \theta) \right)
H=pθθ˙−L=ml2θ˙2−(21ml2θ˙2−mgl(1−cosθ))
H
=
p
θ
2
2
m
l
2
+
m
g
l
(
1
−
cos
θ
)
H = \frac{p_\theta^2}{2ml^2} + mgl(1-\cos \theta)
H=2ml2pθ2+mgl(1−cosθ)
量子力学中的哈密顿量
考虑一个自由粒子的哈密顿量,其经典形式为:
H
=
p
2
2
m
H = \frac{p^2}{2m}
H=2mp2
在量子力学中,动量
p
p
p 被替换为动量算子
p
^
=
−
i
ℏ
∇
\hat{p} = -i\hbar \nabla
p^=−iℏ∇,因此哈密顿量变为:
H
^
=
p
^
2
2
m
=
−
ℏ
2
2
m
∇
2
\hat{H} = \frac{\hat{p}^2}{2m} = -\frac{\hbar^2}{2m} \nabla^2
H^=2mp^2=−2mℏ2∇2
应用
哈密顿量在多个领域中都有广泛的应用,包括但不限于:
-
经典力学:在经典力学中,哈密顿量被用来描述系统的能量,并且通过哈密顿方程可以导出系统的运动方程。这种方法特别适用于处理保守系统和对称性问题。
-
量子力学:在量子力学中,哈密顿量是一个算子,它描述了系统的总能量,并且通过薛定谔方程来描述系统的演化:
i ℏ ∂ ψ ∂ t = H ^ ψ i\hbar \frac{\partial \psi}{\partial t} = \hat{H} \psi iℏ∂t∂ψ=H^ψ
这里 ψ \psi ψ 是波函数。 -
统计力学:在统计力学中,哈密顿量被用来描述系统的微观状态的能量,从而可以计算系统的宏观性质,如熵、温度、压强等。
-
量子场论:在量子场论中,哈密顿量描述了场的量子化能量,并且通过它来计算粒子的产生和湮灭过程。
-
控制理论:在控制理论中,哈密顿量可以用来分析系统的稳定性和最优控制策略。
-
广义相对论:在广义相对论中,哈密顿量可以用来描述时空的动力学,尽管在这种情况下哈密顿量的形式更为复杂。
哈密顿量不仅是理论物理中的基础概念,而且在现代物理学和工程学中都有着极其重要的地位,是理解和解决物理系统动态行为的关键工具。