一、广义坐标和广义动量
在解析力学中,特别是拉格朗日和哈密顿力学中,广义坐标和广义动量是非常关键的概念,它们提供了描述物理系统动力学的一种方法,该方法不依赖于直接使用笛卡尔坐标和相应的速度或动量。
- 广义坐标 (Generalized Coordinates)
广义坐标是描述系统配置的一组独立变量,这些变量可以是长度、角度、角度位移或其他合适的物理量。广义坐标用 q i q_i qi 表示,其中 i = 1 , 2 , . . . , n i = 1, 2, ..., n i=1,2,...,n,这里的 n n n 是系统的自由度数目。系统的自由度是描述其完整配置所需的最小独立坐标数。
广义坐标的选择是任意的,但它们必须是互相独立的,这意味着没有一个广义坐标可以用其它广义坐标来表示。
例如,在一个单摆系统中,我们可以选择摆角作为广义坐标,而不是选择摆球的笛卡尔坐标。
- 广义动量 (Generalized Momentum)
广义动量是相对于广义速度的拉格朗日量的导数。广义动量与广义坐标对应,并用 p i p_i pi 表示,定义为:
p i = ∂ L ∂ q ˙ i p_i = \frac{\partial L}{\partial \dot{q}_i} pi=∂q˙i∂L
其中 L L L 是拉格朗日量, q ˙ i \dot{q}_i q˙i 是广义坐标 q i q_i qi 的时间导数,即广义速度。
在哈密顿力学中,广义动量与广义坐标一起定义了相空间,这是描述系统状态的空间。
总结:
广义坐标和广义动量是解析力学的核心概念,它们为描述多体系统或约束系统提供了一个非常有效的框架,无需直接处理每个组成部分的详细动力学。这些概念在许多物理学分支中都非常有用,特别是在量子力学中,其中与广义坐标和广义动量相关的算子扮演了核心角色。
二、拉格朗日量和哈密顿量
哈密顿量和拉格朗日量都是解析力学中描述物理系统动力学的关键量。这两种描述提供了一种方法,比传统的牛顿力学方法更加适用于处理复杂系统或使用更高级的数学技巧。
- 拉格朗日量 (Lagrangian)
拉格朗日量 L L L 定义为一个系统的动能 T T T 和势能 V V V 之差:
L = T − V L = T - V L=T−V
动力学方程是通过拉格朗日方程来描述的:
d d t ( ∂ L ∂ q ˙ i ) − ∂ L ∂ q i = 0 \frac{d}{dt} \left( \frac{\partial L}{\partial \dot{q}_i} \right) - \frac{\partial L}{\partial q_i} = 0 dtd(∂q˙i∂L)−∂qi∂L=0
其中, q i q_i qi 是广义坐标, q ˙ i \dot{q}_i q˙i是相应的广义速度。
- 哈密顿量 (Hamiltonian)
哈密顿量 H H H 通常定义为广义动量 p p p 和广义坐标 q q q 的函数,它可以从拉格朗日量通过传说中的勒让德变换得到。对于许多系统,哈密顿量与系统的总能量相等:
H = T + V H = T + V H=T+V
广义动量定义为:
p i = ∂ L ∂ q ˙ i p_i = \frac{\partial L}{\partial \dot{q}_i} pi=∂q˙i∂L
哈密顿的正则方程描述了动力学:
q ˙ i = ∂ H ∂ p i \dot{q}_i = \frac{\partial H}{\partial p_i} q˙i=∂pi∂H
p ˙ i = − ∂ H ∂ q i \dot{p}_i = -\frac{\partial H}{\partial q_i} p˙i=−