【张量分析 - 3. 张量算子】

4. 张量算子:从代数运算到张量运算的推广

  • 简单的张量运算(加法、缩并)
  • 张量积与外积的概念
  • 张量微分算子(梯度、散度、旋度)
  • 微分几何中的张量算子应用
  • 广义相对论中的张量算子实例(如里奇张量、爱因斯坦张量)

张量是向量和标量概念的一种自然扩展,在数学和物理学中具有重要的地位。它们能够描述复杂的物理现象,并在各种科学领域中得到广泛应用,特别是在 广义相对论、流体力学和固体力学 等学科。张量不仅可以表示为多维数组,而且还能通过特定的规则进行变换。下面我们将探讨张量的一些基本运算及其应用。

4.1 张量算子(Tensor Operator)

张量算子是数学和物理学中用于描述和操作张量的工具。张量是多线性代数中的一个概念,可以看作是向量和矩阵概念的推广。下面我将简要介绍张量算子的定义、性质、示例和应用。

定义

张量算子(Tensor Operator) ,通常指的是作用在张量上的线性映射,它将一个或多个张量映射到另一个张量。在数学中,张量算子通常与 张量的乘积、收缩、转置 等操作相关联,并且在张量代数和张量分析中扮演重要角色。在物理学中,张量算子经常用于描述物理量的变化,如 角动量算子、应力张量算子 等。

性质

  1. 线性性:张量算子是线性的,即对于任意的标量 a a a b b b,以及张量 T 1 T_1 T1 T 2 T_2 T2,有 A ( a T 1 + b T 2 ) = a A ( T 1 ) + b A ( T 2 ) \mathcal{A}(aT_1 + bT_2) = a\mathcal{A}(T_1) + b\mathcal{A}(T_2) A(aT1+bT2)=aA(T1)+bA(T2)
  2. 变换性质:在坐标变换下,张量算子按照特定的规则变换,这通常与张量的阶数和变换的性质有关。
  3. 可组合性:可以将两个或多个张量算子组合成一个新的张量算子。

在量子力学中,张量算子必须满足一定的变换性质,这确保了它们在量子态之间的转换中保持一致性。具体来说:

  • 变换规则:当系统从一个表示变换到另一个表示时,张量算子会根据一个特定的规则进行变换。这个规则保证了物理量在不同表示下的等价性。
  • 正交性:不同秩的张量算子之间通常是正交的。
  • 闭合性:张量算子的线性组合还是张量算子,且不同秩的张量算子可以通过特定的方式(如直积)组合成更高秩的张量算子。
  • 可约性与不可约性:张量算子可以分为可约表示和不可约表示。不可约张量算子不能进一步分解为更小的独立部分。

示例

  • 标量算子:最简单的张量算子是标量算子,它不改变张量的阶数,例如恒等算子 I I I,它将任何张量映射到其自身。

  • 叉乘算子:在三维空间中,叉乘算子 × \times × 可以看作是一个特殊的张量算子,它将两个向量 a a a b b b 映射到一个新的向量 c c c,即 c = a × b c = a \times b c=a×b

  • 梯度算子:梯度算子 ∇ \nabla 是一个向量算子,它作用于标量场 f f f 产生一个向量场,表示 f f f 的空间变化率。

  • 电导率张量:二阶张量,可以描述材料在不同方向上的导电性质。例如,如果导体在x轴方向导电性质最好,在z轴方向不导电,可以用一个3x3的矩阵来表示这个性质: σ = ( 8 0 0 0 4 0 0 0 0 ) \sigma = \begin{pmatrix} 8 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 0 \end{pmatrix} σ= 800040000 ,其中 σ i j \sigma_{ij} σij​表示电导率张量的不同分量。

  • 角动量算子 J \mathbf{J} J :在量子力学中的作用。角动量算子 J \mathbf{J} J 可以被视为一个秩为1的矢量张量算子。在球谐函数 Y l m ( θ , ϕ ) Y^m_l(\theta, \phi) Ylm(θ,ϕ) 中,角动量算子的分量 J z J_z Jz 的作用为:
    J z Y l m ( θ , ϕ ) = m Y l m ( θ , ϕ ) J_z Y^m_l(\theta, \phi) = m Y^m_l(\theta, \phi) JzYlm(θ,ϕ)=mYlm(θ,ϕ)

  • 克罗内克符号(Kronecker delta δ i j \delta_{ij} δij :二阶张量,其定义为:当i=j时, δ i j = 1 \delta_{ij} = 1 δij=1;当i≠j时, δ i j = 0 \delta_{ij} = 0 δij=0。它在描述单位矩阵时非常有用。

应用

  1. 物理学:在量子力学中,角动量算子用于描述粒子的旋转状态。
  2. 角动量耦合:在多电子原子中,不同电子的角动量可以通过张量算子来耦合,形成总的角动量。
  3. 电磁相互作用:电磁场与粒子的相互作用可以通过张量算子来描述,如电偶极矩和磁偶极矩。
  4. 晶格振动:在固体物理学中,晶格振动模式可以用张量算子来表征,从而研究声子的行为。
  5. 光谱学:在光谱学中,张量算子用于解释原子和分子光谱的复杂结构,包括精细结构和超精细结构。
  6. 广义相对论黎曼曲率张量算子描述了时空的曲率。
  7. 相对论电磁场张量是一个重要的二阶张量,它描述了电场和磁场在不同参考系下的变换关系。通过对电磁场张量应用各种张量算子,可以研究电磁场的传播、相互作用以及与物质的耦合等问题。
  8. 流体力学应力张量是描述流体内部应力状态的张量,通过对应力张量应用张量算子,可以分析流体的流动、变形以及应力分布等情况。
  9. 结构力学刚度张量用于描述结构的刚度特性,通过对刚度张量应用张量算子,可以计算结构在受力情况下的变形、应力和应变等,从而对结构的强度和稳定性进行评估和设计。
  10. 材料科学:材料的物理性质可以用张量来表示,例如弹性模量张量、热膨胀张量等。通过对这些张量应用张量算子,可以研究材料在不同条件下的性能变化,为材料的选择和设计提供依据。
  11. 固体力学应力和应变张量算子用于分析材料的力学行为。
  12. 计算机图形学 :在渲染和动画中,张量算子用于处理纹理映射、光照计算等。张量算子可以用于图形的变换、渲染和动画制作等。例如,对三维模型的顶点坐标张量应用旋转、平移、缩放等算子,可以实现模型的变换和动画效果。
  13. 机器学习 :在机器学习和深度学习中,张量是表示数据的基本形式,例如图像可以表示为三维张量(高度、宽度、颜色通道),文本可以表示为二维张量(句子长度、词向量维度)等。各种神经网络算法中的运算可以看作是对张量应用不同的张量算子,如卷积算子、池化算子等,这些算子对张量进行操作,实现对数据的特征提取、分类、回归等任务。

张量算子是现代科学和工程中不可或缺的工具,它们在理论和应用层面都扮演着重要角色。

4.2 简单的张量运算(加法、缩并)

  • 加法:两个相同阶数的张量可以进行加法运算,只要将对应位置上的元素相加即可。例如,对于两个二阶张量A和B,其和C = A + B定义为 C i j = A i j + B i j C_{ij} = A_{ij} + B_{ij} Cij=Aij+Bij

  • 缩并:缩并是一种将张量的某些指标相匹配从而减少张量阶数的操作。一个常见的例子是在一个二阶张量上应用两次缩并,即取迹操作,结果是一个标量值。比如,对于二阶张量A,其迹tr(A)定义为 t r ( A ) = A i i tr(A) = A_{ii} tr(A)=Aii,这里使用了爱因斯坦求和约定,即重复指标意味着求和。

  • 求和算子:设 A A A B B B 是两个二阶张量,其元素分别为 a i j a_{ij} aij b i j b_{ij} bij,那么求和算子可以表示为 C = A + B C = A + B C=A+B,其中 c i j = a i j + b i j c_{ij} = a_{ij} + b_{ij} cij=aij+bij。这里的加法运算就是一种简单的张量算子,它对张量的每个元素进行逐元素的相加操作。

  • 矩阵乘法算子:对于两个二阶张量(在一定条件下可看作矩阵) A A A B B B,矩阵乘法算子可表示为 C = A B C = AB C=AB,其中 c i j = ∑ k = 1 n a i k b k j c_{ij} = \sum_{k=1}^{n} a_{ik}b_{kj} cij=k=1naikbkj。这是一种常见且重要的张量算子,它将两个矩阵(张量)按照特定的规则进行乘法运算,得到一个新的矩阵(张量)。

  • 转置算子:对于一个二阶张量 A A A,其转置算子可表示为 A T A^T AT,其中 ( A T ) i j = A j i (A^T)_{ij} = A_{ji} (AT)ij=Aji。转置算子将张量的行和列进行交换,是一种对张量的结构进行变换的算子。

4.3 张量积与外积

4.3.1 张量积(Tensor Product): u ⊗ v \mathbf{u} \otimes \mathbf{v} uv

两个张量的张量积是一个更高阶的张量,其每一个分量都是原张量分量的乘积。例如,若A为一阶张量(向量),B为二阶张量,则张量积 A ⊗ B A \otimes B AB​的结果是一个三阶张量。

定义

张量积(Tensor Product) ,是一种结合两个向量空间(或更一般地,两个模)的方法,生成一个新的向量空间(或模)。这个新空间中的元素被称为张量积元素。给定两个向量空间 V V V W W W,张量积 V ⊗ W V \otimes W VW 是一个向量空间,其中的每一个元素都可以表示为原来两个空间中向量的张量积的形式,即 v ⊗ w v \otimes w vw,其中 v ∈ V v \in V vV w ∈ W w \in W wW

性质

  • 双线性:张量积是双线性的,这意味着对于所有 u , v ∈ V u, v \in V u,vV w , x ∈ W w, x \in W w,xW 以及所有的标量 c c c,我们有
    ( u + v ) ⊗ w = u ⊗ w + v ⊗ w , (u + v) \otimes w = u \otimes w + v \otimes w, (u+v)w=uw+vw,
    u ⊗ ( w + x ) = u ⊗ w + u ⊗ x , u \otimes (w + x) = u \otimes w + u \otimes x, u(w+x)=uw+ux,
    ( c u ) ⊗ w = c ( u ⊗ w ) = u ⊗ ( c w ) . (cu) \otimes w = c(u \otimes w) = u \otimes (cw). (cu)w=c(uw)=u(cw).

  • 交换律(对于有限维空间):如果我们考虑的是两个有限维空间的张量积,并且这些空间都是在同一个体(如实数域或复数域)上定义的,那么我们可以交换两个空间的位置而不改变张量积的空间本身(尽管元素的具体表示可能有所不同):
    V ⊗ W ≅ W ⊗ V . V \otimes W \cong W \otimes V. VWWV.

  • 分配律:张量积与直和的关系类似于数的乘法与加法的关系:
    ( V ⊕ U ) ⊗ W ≅ ( V ⊗ W ) ⊕ ( U ⊗ W ) , (V \oplus U) \otimes W \cong (V \otimes W) \oplus (U \otimes W), (VU)W(VW)(UW),
    V ⊗ ( W ⊕ X ) ≅ ( V ⊗ W ) ⊕ ( V ⊗ X ) . V \otimes (W \oplus X) \cong (V \otimes W) \oplus (V \otimes X). V(WX)(VW)(VX).

示例

假设 V V V 是一个包含两个基向量 e 1 , e 2 e_1, e_2 e1,e2 的二维向量空间,而 W W W 是一个包含两个基向量 f 1 , f 2 f_1, f_2 f1,f2 的二维向量空间。那么 V ⊗ W V \otimes W VW 是一个四维向量空间,它的基由 e 1 ⊗ f 1 , e 1 ⊗ f 2 , e 2 ⊗ f 1 , e 2 ⊗ f 2 e_1 \otimes f_1, e_1 \otimes f_2, e_2 \otimes f_1, e_2 \otimes f_2 e1f1,e1f2,e2f1,e2f2 组成。

例如,如果 v = a 1 e 1 + a 2 e 2 v = a_1e_1 + a_2e_2 v=a1e1+a2e2 w = b 1 f 1 + b 2 f 2 w = b_1f_1 + b_2f_2 w=b1f1+b2f2 V V V W W W 中的向量,那么 v ⊗ w v \otimes w vw 可以写成:
v ⊗ w = ( a 1 e 1 + a 2 e 2 ) ⊗ ( b 1 f 1 + b 2 f 2 ) v \otimes w = (a_1e_1 + a_2e_2) \otimes (b_1f_1 + b_2f_2) vw=(a1e1+a2e2)(b1f1+b2f2)
= a 1 b 1 ( e 1 ⊗ f 1 ) + a 1 b 2 ( e 1 ⊗ f 2 ) + a 2 b 1 ( e 2 ⊗ f 1 ) + a 2 b 2 ( e 2 ⊗ f 2 ) . = a_1b_1(e_1 \otimes f_1) + a_1b_2(e_1 \otimes f_2) + a_2b_1(e_2 \otimes f_1) + a_2b_2(e_2 \otimes f_2). =a1b1(e1f1)+a1b2(e1f2)+a2b1(e2f1)+a2b2(e2f2).

应用

  • 量子力学:在量子力学中,张量积用于构建复合系统的状态空间。例如,两个粒子系统的状态可以表示为两个单粒子状态的张量积。
  • 计算机科学:在机器学习和深度学习中,张量积被用来表示多维数据结构,如图像或视频帧,以及神经网络中的权重矩阵。
  • 线性代数:在数学中,张量积被用于构造新的代数结构,如张量代数、外代数等。
  • 几何学:在微分几何中,张量积用于定义流形上的张量场,这是研究曲面和更高维度空间的必要工具。
  • 物理学:在广义相对论中,张量积用于描述时空中的物理量如何随坐标变换。

张量积的概念因其强大的表达能力和灵活性而在现代科学和技术中扮演着不可或缺的角色

4.3.2 内积(Inner Product): u ⋅ v \mathbf{u} \cdot \mathbf{v} uv

定义

内积(Inner Product),也称为点积或标量积 ,是一种将两个向量映射到标量的运算。在数学中,内积是一个二元运算,它接受来自同一向量空间的两个向量作为输入,并输出一个标量。内积的定义依赖于向量空间的基础结构,并且需要满足几个公理:

  1. 对称性(或共轭对称性,取决于定义的域):对于所有向量 u , v \mathbf{u}, \mathbf{v} u,v,有 ⟨ u , v ⟩ = ⟨ v , u ⟩ \langle \mathbf{u}, \mathbf{v} \rangle = \langle \mathbf{v}, \mathbf{u} \rangle u,v=v,u(在实数域上)或 ⟨ u , v ⟩ = ⟨ v , u ⟩ ‾ \langle \mathbf{u}, \mathbf{v} \rangle = \overline{\langle \mathbf{v}, \mathbf{u} \rangle} u,v=v,u(在复数域上)。
  2. 线性(或共轭线性):对于所有向量 u , v , w \mathbf{u}, \mathbf{v}, \mathbf{w} u,v,w 和所有标量 c c c,有 ⟨ c u + v , w ⟩ = c ⟨ u , w ⟩ + ⟨ v , w ⟩ \langle c\mathbf{u} + \mathbf{v}, \mathbf{w} \rangle = c\langle \mathbf{u}, \mathbf{w} \rangle + \langle \mathbf{v}, \mathbf{w} \rangle cu+v,w=cu,w+v,w
  3. 正定性:对于任何非零向量 u \mathbf{u} u,有 ⟨ u , u ⟩ > 0 \langle \mathbf{u}, \mathbf{u} \rangle > 0 u,u>0;并且对于零向量, ⟨ 0 , 0 ⟩ = 0 \langle \mathbf{0}, \mathbf{0} \rangle = 0 0,0=0

性质

除了上述定义中的三个公理之外,内积还具有以下性质:

  • 非负性:对于所有向量 u \mathbf{u} u,有 ⟨ u , u ⟩ ≥ 0 \langle \mathbf{u}, \mathbf{u} \rangle \geq 0 u,u0
  • 正交性:如果 ⟨ u , v ⟩ = 0 \langle \mathbf{u}, \mathbf{v} \rangle = 0 u,v=0,则称向量 u \mathbf{u} u v \mathbf{v} v 正交。

示例

在欧几里得空间 R n \mathbb{R}^n Rn 中,最常见的内积是点积,定义如下:
u ⋅ v = ∑ i = 1 n u i v i \mathbf{u} \cdot \mathbf{v} = \sum_{i=1}^{n} u_i v_i uv=i=1nuivi
其中 u = ( u 1 , u 2 , … , u n ) \mathbf{u} = (u_1, u_2, \ldots, u_n) u=(u1,u2,,un) v = ( v 1 , v 2 , … , v n ) \mathbf{v} = (v_1, v_2, \ldots, v_n) v=(v1,v2,,vn) 是两个 n n n-维向量。

例如,考虑 R 3 \mathbb{R}^3 R3 中的两个向量 u = ( 1 , − 2 , 3 ) \mathbf{u} = (1, -2, 3) u=(1,2,3) v = ( − 1 , 2 , 1 ) \mathbf{v} = (-1, 2, 1) v=(1,2,1),则它们的内积为:
u ⋅ v = ( 1 ) ( − 1 ) + ( − 2 ) ( 2 ) + ( 3 ) ( 1 ) = − 1 − 4 + 3 = − 2. \mathbf{u} \cdot \mathbf{v} = (1)(-1) + (-2)(2) + (3)(1) = -1 - 4 + 3 = -2. uv=(1)(1)+(2)(2)+(3)(1)=14+3=2.

应用

内积在许多领域都有广泛的应用,包括但不限于:

  • 几何学:内积用于定义向量的长度(范数)和角度。向量的长度是其与自身内积的平方根,而两个向量之间的角度可以通过它们的内积来计算。
  • 物理学:在物理学中,内积用于计算力和位移之间的功,以及能量和动量的转移。
  • 信号处理:内积在信号处理中用于比较信号之间的相似度,以及滤波器设计。
  • 统计学与机器学习:内积在统计学中用于估计协方差矩阵,在机器学习中用于计算特征向量之间的相似度,支持向量机(SVM)算法中内核技巧也是基于内积的思想。
  • 优化:在最优化理论中,内积可以用来定义目标函数,以及梯度下降等优化算法中的梯度方向。

内积是一个基本的数学概念,它在数学的各个分支以及科学和工程中都扮演着极其重要的角色。

4.3.3 外积(Outer Product): a × b \mathbf{a} \times \mathbf{b} a×b

定义

外积(Outer Product),也称作张量积或直积 ,是一种将两个向量组合成矩阵或其他更高阶张量的运算。对于两个向量 u \mathbf{u} u v \mathbf{v} v,外积通常定义为 u v ⊤ \mathbf{u} \mathbf{v}^\top uv,其中 u \mathbf{u} u 是列向量, v \mathbf{v} v 是行向量。如果 u \mathbf{u} u 是一个 m m m-维向量, v \mathbf{v} v 是一个 n n n-维向量,那么外积的结果是一个 m × n m \times n m×n​ 的矩阵。

外积,外积通常用于向量之间,它是向量张量积的一个特例。两个向量a和b的外积 a ∧ b a \wedge b ab a ⊗ b a \otimes b ab形成一个新的二阶张量(如果考虑为二维空间中的向量),这个张量代表了一个平面区域的度量。

性质

外积具有以下一些基本性质:

  • 非对称性:外积一般是不对称的,即 u v ⊤ ≠ v u ⊤ \mathbf{u} \mathbf{v}^\top \neq \mathbf{v} \mathbf{u}^\top uv=vu,除非 u \mathbf{u} u v \mathbf{v} v 都是一维向量。
  • 线性性:对于任意的向量 u 1 , u 2 \mathbf{u}_1, \mathbf{u}_2 u1,u2 v 1 , v 2 \mathbf{v}_1, \mathbf{v}_2 v1,v2 以及标量 a , b a, b a,b,有 ( a u 1 + b u 2 ) v ⊤ = a u 1 v ⊤ + b u 2 v ⊤ (a\mathbf{u}_1 + b\mathbf{u}_2) \mathbf{v}^\top = a\mathbf{u}_1 \mathbf{v}^\top + b\mathbf{u}_2 \mathbf{v}^\top (au1+bu2)v=au1v+bu2v 以及 u ( a v 1 + b v 2 ) ⊤ = a u v 1 ⊤ + b u v 2 ⊤ \mathbf{u} (a\mathbf{v}_1 + b\mathbf{v}_2)^\top = a\mathbf{u} \mathbf{v}_1^\top + b\mathbf{u} \mathbf{v}_2^\top u(av1+bv2)=auv1+buv2
  • 秩性质:如果 u \mathbf{u} u v \mathbf{v} v 均为非零向量,则 u v ⊤ \mathbf{u} \mathbf{v}^\top uv 的秩为1,因为所有列都是 v \mathbf{v} v 的倍数,所有行都是 u \mathbf{u} u 的倍数。

示例

假设 u = ( 1 2 3 ) \mathbf{u} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} u= 123 v = ( − 1 2 1 ) \mathbf{v} = \begin{pmatrix} -1 & 2 & 1 \end{pmatrix} v=(121),那么 u v ⊤ \mathbf{u} \mathbf{v}^\top uv 的外积计算如下:
u v ⊤ = ( 1 2 3 ) ( − 1 2 1 ) = ( 1 ⋅ ( − 1 ) 1 ⋅ 2 1 ⋅ 1 2 ⋅ ( − 1 ) 2 ⋅ 2 2 ⋅ 1 3 ⋅ ( − 1 ) 3 ⋅ 2 3 ⋅ 1 ) = ( − 1 2 1 − 2 4 2 − 3 6 3 ) . \mathbf{u} \mathbf{v}^\top = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} \begin{pmatrix} -1 & 2 & 1 \end{pmatrix} = \begin{pmatrix} 1 \cdot (-1) & 1 \cdot 2 & 1 \cdot 1 \\ 2 \cdot (-1) & 2 \cdot 2 & 2 \cdot 1 \\ 3 \cdot (-1) & 3 \cdot 2 & 3 \cdot 1 \end{pmatrix} = \begin{pmatrix} -1 & 2 & 1 \\ -2 & 4 & 2 \\ -3 & 6 & 3 \end{pmatrix}. uv= 123 (121)= 1(1)2(1)3(1)122232112131 = 123246123 .

应用

外积在多个领域都有着广泛的应用:

  • 线性代数:在矩阵理论中,外积可以用来构造矩阵,特别是秩为1的矩阵。这对于理解和构建更复杂的矩阵很有帮助。
  • 量子力学:在量子力学中,外积被用来构造纯态的密度矩阵,这些矩阵用于描述量子系统的状态。
  • 控制理论:在控制系统的设计中,外积可以用来构造特定类型的控制器,比如基于状态反馈的控制器。
  • 计算机视觉:在计算机视觉和图像处理中,外积被用来表示图像的特征向量,并且在主成分分析(PCA)等降维技术中也有应用。
  • 机器学习:在机器学习中,外积可以用于特征空间的变换,以及在一些特定的模型中作为基础运算。

外积提供了一种简洁的方式来构造和理解矩阵和其他张量,它在数学和工程学的许多领域中都是非常有用的工具。

4.3.4 混合积(Mixed Product): ( a × b ) ⋅ c (\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c} (a×b)c

混合积(Mixed Product),也称为标量三重积或向量三重积 ,是向量代数中的一个概念。它涉及三个向量,并且结果是一个标量值。混合积有两种形式,分别基于点积(标量积)和叉积(向量积)。

定义

对于三维空间中的三个向量 a \mathbf{a} a, b \mathbf{b} b c \mathbf{c} c,混合积可以表示为:
( a ⋅ ( b × c ) ) (\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c})) (a(b×c))
也可以写作:
( a × b ) ⋅ c (\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c} (a×b)c

这里的 b × c \mathbf{b} \times \mathbf{c} b×c 是向量 b \mathbf{b} b c \mathbf{c} c 的叉积,结果是一个向量;而 a ⋅ ( b × c ) \mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) a(b×c) 是向量 a \mathbf{a} a 和这个叉积结果的点积,最终得到的是一个标量。

性质

  1. 交换律:混合积对于点积内的向量是可交换的,即 ( a ⋅ ( b × c ) ) = ( ( b × c ) ⋅ a ) (\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c})) = ((\mathbf{b} \times \mathbf{c}) \cdot \mathbf{a}) (a(b×c))=((b×c)a),但是对叉积内部的向量则是反交换的,即 ( a ⋅ ( b × c ) ) = − ( a ⋅ ( c × b ) ) (\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c})) = -(\mathbf{a} \cdot (\mathbf{c} \times \mathbf{b})) (a(b×c))=(a(c×b))
  2. 几何意义:混合积的绝对值等于由向量 a \mathbf{a} a, b \mathbf{b} b c \mathbf{c} c 形成的平行六面体的体积。
  3. 线性性质:混合积相对于每个向量都是线性的,即如果向量 a \mathbf{a} a b \mathbf{b} b c \mathbf{c} c 被标量乘以,那么混合积也会被相同的标量所乘。

示例

假设有三个向量 a = ( 1 , 2 , 3 ) \mathbf{a} = (1, 2, 3) a=(1,2,3), b = ( 4 , 5 , 6 ) \mathbf{b} = (4, 5, 6) b=(4,5,6), c = ( 7 , 8 , 9 ) \mathbf{c} = (7, 8, 9) c=(7,8,9)

首先计算 b × c \mathbf{b} \times \mathbf{c} b×c
b × c = ∣ i j k 4 5 6 7 8 9 ∣ = ( 5 ∗ 9 − 6 ∗ 8 ) i − ( 4 ∗ 9 − 6 ∗ 7 ) j + ( 4 ∗ 8 − 5 ∗ 7 ) k \mathbf{b} \times \mathbf{c} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 4 & 5 & 6 \\ 7 & 8 & 9 \\ \end{vmatrix} = (5*9-6*8)\mathbf{i} - (4*9-6*7)\mathbf{j} + (4*8-5*7)\mathbf{k} b×c= i47j58k69 =(5968)i(4967)j+(4857)k
= ( − 3 ) i + ( 6 ) j + ( − 3 ) k = (-3)\mathbf{i} + (6)\mathbf{j} + (-3)\mathbf{k} =(3)i+(6)j+(3)k

然后计算 a ⋅ ( b × c ) \mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) a(b×c)
a ⋅ ( b × c ) = ( 1 , 2 , 3 ) ⋅ ( − 3 , 6 , − 3 ) = 1 ∗ ( − 3 ) + 2 ∗ 6 + 3 ∗ ( − 3 ) \mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) = (1, 2, 3) \cdot (-3, 6, -3) = 1*(-3) + 2*6 + 3*(-3) a(b×c)=(1,2,3)(3,6,3)=1(3)+26+3(3)
= − 3 + 12 − 9 = 0 = -3 + 12 - 9 = 0 =3+129=0

因此, a ⋅ ( b × c ) = 0 \mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) = 0 a(b×c)=0

应用

混合积在物理学、工程学以及计算机图形学等领域有广泛的应用。例如,在物理中,它可以用来计算力矩或角动量;在计算机图形学中,它可以用于确定三个点是否共面,或者计算多边形的面积等。

4.4 张量微分算子(梯度、散度、旋度)

张量微分算子是研究张量场变化的重要工具,它们包括但不限于:

  • 梯度:对于一个标量函数φ,其梯度∇φ是一个向量,指向函数增长最快的方向,大小为该方向上的最大增长率。

  • 散度:对于一个向量场F,其散度∇·F衡量的是该点处向量场的源或汇的程度。

  • 旋度:对于一个三维向量场F,其旋度∇×F是一个向量,表示该点处的旋转程度。

4.4.1 偏微分 (Partial Differential): ∂ f {\partial f} f

定义

偏微分 (Partial Differential) ,是微积分的一个分支,用于处理含有多个自变量的函数。当我们讨论一个多元函数 z = f ( x 1 , x 2 , … , x n ) z = f(x_1, x_2, \ldots, x_n) z=f(x1,x2,,xn) 时,偏微分是指函数关于其中一个自变量的导数,同时保持其他所有自变量不变。偏微分的符号通常使用偏导数符号 ∂ ∂ x i \frac{\partial}{\partial x_i} xi 来表示,其中 x i x_i xi 是自变量之一。

如果 z = f ( x 1 , x 2 , … , x n ) z = f(x_1, x_2, \ldots, x_n) z=f(x1,x2,,xn),则函数 f f f 关于 x i x_i xi 的偏导数定义为:
∂ z ∂ x i = lim ⁡ h → 0 f ( x 1 , … , x i + h , … , x n ) − f ( x 1 , … , x i , … , x n ) h \frac{\partial z}{\partial x_i} = \lim_{h \to 0} \frac{f(x_1, \ldots, x_i + h, \ldots, x_n) - f(x_1, \ldots, x_i, \ldots, x_n)}{h} xiz=limh0hf(x1,,xi+h,,xn)f(x1,,xi,,xn)

非形式化(informal): 考虑一个定义在开集 U U U 上的标量函数 f : U ⊆ R n → R f: U \subseteq \mathbb{R}^n \to \mathbb{R} f:URnR。对于 U U U 中的点 x ( x 1 , x 2 , … , x n ) \mathbf{x}(x_1, x_2, \ldots, x_n) x(x1,x2,,xn) 和固定的 i i i (其中 1 ≤ i ≤ n 1 \leq i \leq n 1in),如果存在极限: lim ⁡ h → 0 f ( x 1 , … , x i − 1 , x i + h , x i + 1 , … , x n ) − f ( x 1 , … , x n ) h \lim_{{h \to 0}} \frac{f(x_1, \ldots, x_{i-1}, x_i+h, x_{i+1}, \ldots, x_n) - f(x_1, \ldots, x_n)}{h} limh0hf(x1,,xi1,xi+h,xi+1,,xn)f(x1,,xn),那么这个极限就称为 f f f 在点 ( x 1 , x 2 , … , x n ) (x_1, x_2, \ldots, x_n) (x1,x2,,xn) 相对于 x i x_i xi偏微分,记作 ∂ f ∂ x i \frac{\partial f}{\partial x_i} xif f x i f_{x_i} fxi
也即
∂ f ∂ x i = lim ⁡ h → 0 f ( x 1 , … , x i − 1 , x i + h , x i + 1 , … , x n ) − f ( x 1 , … , x n ) h \frac{\partial f}{\partial x_i} = \lim_{{h \to 0}} \frac{f(x_1, \ldots, x_{i-1}, x_i+h, x_{i+1}, \ldots, x_n) - f(x_1, \ldots, x_n)}{h} xif=limh0hf(x1,,xi1,xi+h,xi+1,,xn)f(x1,,xn)

直观上,偏微分 ∂ f ∂ x i \frac{\partial f}{\partial x_i} xif 描述了当 x i x_i xi 发生微小变化时,函数 f f f 的变化,同时其他变量保持不变。 这与单变量微积分中的普通导数有相似之处,但在多变量的情境下,我们只考虑某一个特定的变量,而其他的变量都视为常数。

半形式化(semiformal): 考虑一个定义在开集 U U U 上的标量函数 f : U ⊆ R n → R f: U \subseteq \mathbb{R}^n \to \mathbb{R} f:URnR。对于 U U U 中的点 x ( x 1 , x 2 , … , x n ) \mathbf{x}(x_1, x_2, \ldots, x_n) x(x1,x2,,xn) 和固定的 i i i (其中 1 ≤ i ≤ n 1 \leq i \leq n 1in),对于任何足够小的 ϵ \epsilon ϵ,存在一个 δ \delta δ,使得当 x i x_i xi 变化的幅度 h h h 小于 δ \delta δ 时,函数 f f f 与其在 x \mathbf{x} x 处的线性逼近的偏差小于 ϵ × ∣ h ∣ \epsilon \times |h| ϵ×h。那么函数 f f f 相对于 x i x_i xi 在点 x \mathbf{x} x偏微分,表示为 ∂ f ∂ x i ( x ) \frac{\partial f}{\partial x_i}(\mathbf{x}) xif(x)

偏微分的形式化定义涉及到极限的定义。首先,回顾一下极限的 ϵ \epsilon ϵ- δ \delta δ定义:
∀ ϵ > 0 , ∃ δ > 0 , ∀ x ( 0 < ∣ x − c ∣ < δ ⇒ ∣ f ( x ) − L ∣ < ϵ ) \forall \epsilon > 0, \exists \delta > 0, \forall x (0 < |x - c| < \delta \Rightarrow |f(x) - L| < \epsilon) ϵ>0,δ>0,x(0<xc<δf(x)L<ϵ)

形式化(formal) :考虑一个定义在开集 U U U 上的标量函数 f : U ⊆ R n → R f: U \subseteq \mathbb{R}^n \to \mathbb{R} f:URnR。函数 f f f 相对于 x i x_i xi 在点 x \mathbf{x} x偏微分 ∂ f ∂ x i ( x ) \frac{\partial f}{\partial x_i}(\mathbf{x}) xif(x),定义为
∀ ϵ > 0 , ∃ δ > 0 , ∀ h ∈ R , ( 0 < ∣ h ∣ < δ ⇒ ∣ f ( x 1 , … , x i − 1 , x i + h , x i + 1 , … , x n ) − f ( x ) − h × ∂ f ∂ x i ( x ) ∣ < ϵ × ∣ h ∣ ) \forall \epsilon > 0, \exists \delta > 0, \forall h \in \mathbb{R}, (0 < |h| < \delta \Rightarrow |f(x_1, \ldots, x_{i-1}, x_i+h, x_{i+1}, \ldots, x_n) - f(\mathbf{x}) - h \times \frac{\partial f}{\partial x_i}(\mathbf{x})| < \epsilon \times |h|) ϵ>0,δ>0,hR,(0<h<δf(x1,,xi1,xi+h,xi+1,,xn)f(x)h×xif(x)<ϵ×h)

性质

  1. 线性:偏导数具有线性性质,即如果 f f f g g g 都是可微的函数,并且 c c c 是常数,那么:
    ∂ ∂ x i ( c f + g ) = c ∂ f ∂ x i + ∂ g ∂ x i \frac{\partial}{\partial x_i}(cf + g) = c\frac{\partial f}{\partial x_i} + \frac{\partial g}{\partial x_i} xi(cf+g)=cxif+xig

  2. 链式法则:如果 u = f ( x , y ) u = f(x, y) u=f(x,y) 并且 x = g ( t ) x = g(t) x=g(t), y = h ( t ) y = h(t) y=h(t),那么:
    d u d t = ∂ u ∂ x d x d t + ∂ u ∂ y d y d t \frac{du}{dt} = \frac{\partial u}{\partial x}\frac{dx}{dt} + \frac{\partial u}{\partial y}\frac{dy}{dt} dtdu=xudtdx+yudtdy

  3. 高阶偏导数:偏导数还可以继续求导,得到更高阶的偏导数,比如二阶偏导数 ∂ 2 f ∂ x i 2 \frac{\partial^2 f}{\partial x_i^2} xi22f 或者混合偏导数 ∂ 2 f ∂ x i ∂ x j \frac{\partial^2 f}{\partial x_i \partial x_j} xixj2f

示例

  • 考虑函数 z = f ( x , y ) = x 2 + x y + y 2 z = f(x, y) = x^2 + xy + y^2 z=f(x,y)=x2+xy+y2,计算其关于 x x x y y y 的偏导数:

∂ z ∂ x = 2 x + y \frac{\partial z}{\partial x} = 2x + y xz=2x+y
∂ z ∂ y = x + 2 y \frac{\partial z}{\partial y} = x + 2y yz=x+2y

  • 例1:三维欧式空间的标量场 f : R 3 → R f: \mathbb{R}^3 \rightarrow \mathbb{R} f:R3R,关于 x x x y y y z z z偏微分分别为: ∂ f ∂ x , ∂ f ∂ y 和 ∂ f ∂ z \frac{\partial f}{\partial x} ,\frac{\partial f}{\partial y} \text{和}\frac{\partial f}{\partial z} xf,yfzf
  • 例2:温度分布 T : R 3 → R T: \mathbb{R}^3 \rightarrow \mathbb{R} T:R3R,在空间中,每一点的温度值 T ( x , y , z ) T(x,y,z) T(x,y,z),在 x x x y y y z z z 方向的变化率 分别为: ∂ T ∂ x , ∂ T ∂ y 和 ∂ T ∂ z \frac{\partial T}{\partial x} ,\frac{\partial T}{\partial y} \text{和}\frac{\partial T}{\partial z} xT,yTzT
  • 例3:压力分布 P : R 3 → R P: \mathbb{R}^3 \rightarrow \mathbb{R} P:R3R,在流体中,每一点的压力值 P ( x , y , z ) P(x,y,z) P(x,y,z),在 x x x y y y z z z 方向的变化率 分别为: ∂ P ∂ x , ∂ P ∂ y 和 ∂ P ∂ z \frac{\partial P}{\partial x} ,\frac{\partial P}{\partial y} \text{和}\frac{\partial P}{\partial z} xP,yPzP
  • 例4:电势分布 V : R 3 → R V: \mathbb{R}^3 \rightarrow \mathbb{R} V:R3R,在电场中,每一点的电势值 V ( x , y , z ) V(x,y,z) V(x,y,z),在 x x x y y y z z z 方向的变化率 分别为: ∂ V ∂ x , ∂ V ∂ y 和 ∂ V ∂ z \frac{\partial V}{\partial x} ,\frac{\partial V}{\partial y} \text{和}\frac{\partial V}{\partial z} xV,yVzV

应用

偏微分方程在科学和工程中有广泛的应用,包括但不限于以下领域:

  • 物理学:波动方程、热传导方程、薛定谔方程等都是重要的偏微分方程。
  • 流体力学:纳维-斯托克斯方程描述了流体动力学中的速度场和压力场。
  • 金融数学:布莱克-斯科尔斯模型中的偏微分方程用于描述期权定价。
  • 量子力学:薛定谔方程是量子力学的基础方程之一,描述了量子系统的演化。
  • 图像处理:在数字图像处理中,偏微分方程可以用来进行边缘检测、图像平滑等操作。

偏微分方程的研究不仅限于理论,还包括数值解法的发展,以便能够在实际问题中找到近似解。现代计算机技术的进步使得数值模拟成为解决复杂偏微分方程的有效工具。

偏微分描述了一个多变量函数,当其他变量保持不变时,函数相对于某一个变量的变化率

4.4.2 全微分 (Total Differential): d f df df

定义

全微分 (Total Differential) ,是多元函数微分学中的一个概念。如果有一个由多个变量组成的函数 z = f ( x 1 , x 2 , … , x n ) z = f(x_1, x_2, \ldots, x_n) z=f(x1,x2,,xn),并且这个函数在某一点 ( x 1 , x 2 , … , x n ) (x_1, x_2, \ldots, x_n) (x1,x2,,xn) 处的偏导数都存在,那么我们就可以定义这个函数在这点上的全微分。

具体来说,假设函数 z = f ( x 1 , x 2 , … , x n ) z = f(x_1, x_2, \ldots, x_n) z=f(x1,x2,,xn) 在点 ( x 1 , x 2 , … , x n ) (x_1, x_2, \ldots, x_n) (x1,x2,,xn) 处可微,则在这一点上函数的全微分 d z dz dz 定义为:
d z = ∂ f ∂ x 1 d x 1 + ∂ f ∂ x 2 d x 2 + ⋯ + ∂ f ∂ x n d x n dz = \frac{\partial f}{\partial x_1}dx_1 + \frac{\partial f}{\partial x_2}dx_2 + \cdots + \frac{\partial f}{\partial x_n}dx_n dz=x1fdx1+x2fdx2++xnfdxn

这里的 d x i dx_i dxi 表示第 i i i 个自变量 x i x_i xi 的微小增量,而 ∂ f ∂ x i \frac{\partial f}{\partial x_i} xif 是函数 f f f x i x_i xi​ 的偏导数。

全微分描述了一个多变量函数,在所有变量上的微小变化,导致的总体变化。

非形式化(informal): 考虑一个定义在开集 U U U 上的标量函数 f : U ⊆ R n → R f: U \subseteq \mathbb{R}^n \to \mathbb{R} f:URnR。,其全微分是以下形式的线性逼近:

d f = ∂ f ∂ x 1 d x 1 + ∂ f ∂ x 2 d x 2 + ⋯ + ∂ f ∂ x n d x n df = \frac{\partial f}{\partial x_1} dx_1 + \frac{\partial f}{\partial x_2} dx_2 + \dots + \frac{\partial f}{\partial x_n} dx_n df=x1fdx1+x2fdx2++xnfdxn

其中:

  • ∂ f ∂ x i \frac{\partial f}{\partial x_i} xif 是函数 f f f 关于变量 x i x_i xi 的偏导数。
  • d x i dx_i dxi 是变量 x i x_i xi 的一个微小变化。

直观地说,全微分给出了函数 f f f 的总体变化,考虑到所有的输入变量 x 1 , x 2 , … , x n x_1, x_2, \ldots, x_n x1,x2,,xn 都有可能发生微小变化。

更严格地说,全微分 d f df df 在点 x \mathbf{x} x 是以下的线性函数:

d f ( h ) = ∇ f ( x ) ⋅ h df(\mathbf{h}) = \nabla f(\mathbf{x}) \cdot \mathbf{h} df(h)=f(x)h

其中:

  • ∇ f ( x ) \nabla f(\mathbf{x}) f(x) 是函数 f f f 在点 x \mathbf{x} x 的梯度。
  • h \mathbf{h} h 是一个向量,表示每一个变量的微小变化。
  • “·” 表示点积。

性质

  1. 线性:全微分是一个线性变换,即如果 d z 1 dz_1 dz1 d z 2 dz_2 dz2 分别是两个函数 z 1 z_1 z1 z 2 z_2 z2 的全微分,那么任意常数 a a a b b b 的函数 a z 1 + b z 2 az_1 + bz_2 az1+bz2 的全微分等于 a d z 1 + b d z 2 a dz_1 + b dz_2 adz1+bdz2
  2. 可加性:如果 z = f ( x 1 , x 2 , … , x n ) z = f(x_1, x_2, \ldots, x_n) z=f(x1,x2,,xn) 可以分解成几个部分的和,则全微分也可以相应地分解。
  3. 乘法法则:对于乘积函数,其全微分可以通过乘法法则来计算。

示例

考虑一个二元函数 z = f ( x , y ) = x 2 y z = f(x, y) = x^2y z=f(x,y)=x2y,我们要计算它在点 ( 1 , 2 ) (1, 2) (1,2) 处的全微分。首先,计算偏导数:
∂ f ∂ x = 2 x y \frac{\partial f}{\partial x} = 2xy xf=2xy
∂ f ∂ y = x 2 \frac{\partial f}{\partial y} = x^2 yf=x2

在点 ( 1 , 2 ) (1, 2) (1,2) 处,这些偏导数的值分别为:
∂ f ∂ x ∣ ( 1 , 2 ) = 2 ⋅ 1 ⋅ 2 = 4 \left. \frac{\partial f}{\partial x} \right|_{(1,2)} = 2 \cdot 1 \cdot 2 = 4 xf (1,2)=212=4
∂ f ∂ y ∣ ( 1 , 2 ) = 1 2 = 1 \left. \frac{\partial f}{\partial y} \right|_{(1,2)} = 1^2 = 1 yf (1,2)=12=1

因此,在点 ( 1 , 2 ) (1, 2) (1,2) 处的全微分为:
d z = 4 d x + 1 d y dz = 4 dx + 1 dy dz=4dx+1dy

这里 d x dx dx d y dy dy 分别表示 x x x y y y 的微小变化量。

应用

全微分在工程、物理以及经济学等领域有着广泛的应用,例如:

  • 物理学:在热力学中,状态函数如内能、焓、吉布斯自由能等可以使用全微分来描述它们随系统参数的变化。
  • 经济学:在微观经济学中,成本函数或效用函数的全微分可以帮助分析价格变动对总成本或消费者满意度的影响。
  • 工程技术:在控制系统中,全微分可以用来分析系统输出对输入变化的敏感度。

全微分的概念有助于理解和解决许多实际问题,特别是在需要评估多因素变化对结果影响的情况下。

4.4.3 向量值函数的微分 (Total Differential): d f df df

定义

向量值函数(Vector-Valued Function) ,是一类特殊的函数,其 输出是一个向量 。向量值函数是从实数集到 R n \mathbb {R}^n Rn 的函数。给定一个向量值函数 r ( t ) \mathbf{r}(t) r(t),它是一个时间参数 t t t 的函数,那么 r ( t ) = ( f 1 ( t ) , f 2 ( t ) , … , f n ( t ) ) \mathbf{r}(t) = (f_1(t), f_2(t), \ldots, f_n(t)) r(t)=(f1(t),f2(t),,fn(t)),其中每个 f i ( t ) f_i(t) fi(t) 都是标量函数,这个函数描述了一个随时间 t t t 变化的向量。

向量值函数的微分(Total Differential of Vector-Valued Function) ,或者说是它的导数, 是一个新的向量值函数,它描述了原函数在每一点处的瞬时变化率 。如果 r ( t ) \mathbf{r}(t) r(t) 在某点 t t t 处可微,则其微分 d r \mathbf{dr} dr 可以通过求各分量的微分来获得:
d r = ( d f 1 d t d t , d f 2 d t d t , … , d f n d t d t ) \mathbf{dr} = \left( \frac{df_1}{dt}dt, \frac{df_2}{dt}dt, \ldots, \frac{df_n}{dt}dt \right) dr=(dtdf1dt,dtdf2dt,,dtdfndt)

现在,对于 r ( t ) \mathbf{r}(t) r(t) 的导数,其定义与一元函数的导数相似,但它是按分量进行的。对 r ( t ) \mathbf{r}(t) r(t) 的导数定义为:

r ′ ( t ) = d r d t = d r = ( d f 1 d t , d f 2 d t , … , d f n d t ) \mathbf{r}'(t) = \frac{d\mathbf{r}}{dt} = \mathbf{dr} = \left( \frac{df_1}{dt}, \frac{df_2}{dt}, \ldots, \frac{df_n}{dt} \right) r(t)=dtdr=dr=(dtdf1,dtdf2,,dtdfn)

这里,每个分量 d f i d t \frac{df_i}{dt} dtdfi f i ( t ) f_i(t) fi(t) 的普通导数。

这种导数的直观理解是,每个分量表示函数在相应方向上的变化率。当 t t t 发生微小变化时,向量值函数 r ( t ) \mathbf{r}(t) r(t) 在每个坐标方向上的变化量由相应的导数分量给出。

性质

  1. 线性:向量值函数的微分满足线性运算规则,即对于任何向量值函数 r ( t ) \mathbf{r}(t) r(t) s ( t ) \mathbf{s}(t) s(t) 以及常数 c c c,有:
    d ( c r ( t ) + s ( t ) ) = c d r ( t ) + d s ( t ) d(c\mathbf{r}(t) + \mathbf{s}(t)) = c d\mathbf{r}(t) + d\mathbf{s}(t) d(cr(t)+s(t))=cdr(t)+ds(t)

  2. 链式法则:如果 r ( t ) \mathbf{r}(t) r(t) 是一个向量值函数,并且还有一个函数 F ( r ) F(\mathbf{r}) F(r),那么复合函数 F ( r ( t ) ) F(\mathbf{r}(t)) F(r(t)) 的微分可以通过链式法则来计算:
    d ( F ( r ( t ) ) ) = ∇ F ( r ( t ) ) ⋅ d r ( t ) d(F(\mathbf{r}(t))) = \nabla F(\mathbf{r}(t)) \cdot d\mathbf{r}(t) d(F(r(t)))=F(r(t))dr(t)

这里的 ∇ F \nabla F F F F F 的梯度向量。

示例

考虑一个二维空间中的向量值函数 r ( t ) = ( t 2 , sin ⁡ ( t ) ) \mathbf{r}(t) = (t^2, \sin(t)) r(t)=(t2,sin(t)),我们要计算它在任意时刻 t t t 的微分。首先,计算各个分量的导数:
d d t f 1 ( t ) = d d t ( t 2 ) = 2 t \frac{d}{dt}f_1(t) = \frac{d}{dt}(t^2) = 2t dtdf1(t)=dtd(t2)=2t
d d t f 2 ( t ) = d d t ( sin ⁡ ( t ) ) = cos ⁡ ( t ) \frac{d}{dt}f_2(t) = \frac{d}{dt}(\sin(t)) = \cos(t) dtdf2(t)=dtd(sin(t))=cos(t)

因此,该向量值函数在任意时刻 t t t 的微分是:
d r ( t ) = ( 2 t d t , cos ⁡ ( t ) d t ) d\mathbf{r}(t) = (2t dt, \cos(t) dt) dr(t)=(2tdt,cos(t)dt)

应用

向量值函数及其微分在多个领域中都有应用:

  • 运动学:在物理学中,位置向量 r ( t ) \mathbf{r}(t) r(t) 描述了一个物体随时间的位置变化。它的微分给出了速度向量 v ( t ) \mathbf{v}(t) v(t),再求微分可以得到加速度向量 a ( t ) \mathbf{a}(t) a(t)
  • 几何学:向量值函数可以用来描述曲线,其微分提供了曲线的切线方向。
  • 工程学:在机械工程中,向量值函数用于描述机器零件的位移,其微分则描述了速度和加速度。
  • 计算机图形学:在动画制作中,向量值函数可以用来表示物体的运动轨迹,微分则用来计算物体的速度和加速度,这对于实现逼真的动画效果至关重要。

向量值函数的微分不仅在理论上重要,在实践中也是理解和解决问题的关键工具。

4.4.4 梯度 (Gradient): ∇ f \nabla f f

定义

梯度 Gradient) ,是一个 标量场的向量算子 ,用于表示 标量函数在某一点上的最大增长方向和速率 。对于一个定义在 R n \mathbb{R}^n Rn 上的 标量场 (函数) f : R n → R f: \mathbb{R}^n \to \mathbb{R} f:RnR,也即标量函数 f ( x 1 , x 2 , … , x n ) f(x_1, x_2, \ldots, x_n) f(x1,x2,,xn),其梯度在点 x = ( x 1 , x 2 , … , x n ) \mathbf{x} = (x_1, x_2, \ldots, x_n) x=(x1,x2,,xn) 上是一个向量,,记作 ∇ f \nabla f f 或者 grad  f \text{grad } f grad f,其定义为:
∇ f = ( ∂ f ∂ x 1 , ∂ f ∂ x 2 , … , ∂ f ∂ x n ) \nabla f = \left( \frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial x_2}, \ldots, \frac{\partial f}{\partial x_n} \right) f=(x1f,x2f,,xnf)

其中,每个分量 ∂ f ∂ x i \frac{\partial f}{\partial x_i} xif 是函数 f f f 在点 x \mathbf{x} x 相对于 x i x_i xi 的偏微分。

对于标量场(或标量函数) f ( x , y , z ) f(x,y,z) f(x,y,z)梯度算子 ∇ f \nabla f f(或 g r a d f \mathbf{grad} f gradf)表示为:
g r a d f = ∂ f ∂ x i + ∂ f ∂ y j + ∂ f ∂ z k (2) \mathbf{grad} f = \frac{\partial f}{\partial x}\mathbf{i} + \frac{\partial f}{\partial y}\mathbf{j} + \frac{\partial f}{\partial z}\mathbf{k} \tag{2} gradf=xfi+yfj+zfk(2)

∇ f = ( ∂ f ∂ x , ∂ f ∂ y , ∂ f ∂ z ) (2) \nabla f = \left( \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z} \right)\tag{2} f=(xf,yf,zf)(2)

直观上,梯度的方向指示了函数增加最快的方向,而它的大小(即向量的模)给出了这一方向上的增加率。如果你在空间中的某一点沿着梯度的方向移动,那么你正在选择使函数 f f f 增加得最快的路径。

值得注意的是,当我们谈论的是标量场(即函数的输出是一个标量)时,梯度是有意义的。如果我们处理的是向量场,则需要考虑其他概念,例如散度或旋度。

性质

  1. 方向性:梯度的方向总是垂直于函数等值面(等高线)的方向。
  2. 最大方向导数:函数在某一点的最大方向导数就是该点处梯度的模长。
  3. 链式法则:如果函数 f f f 依赖于另一个向量值函数 r ( t ) \mathbf{r}(t) r(t),即 f ( r ( t ) ) f(\mathbf{r}(t)) f(r(t)),那么根据链式法则,复合函数的导数为:
    d f d t = ∇ f ⋅ d r d t \frac{df}{dt} = \nabla f \cdot \frac{d\mathbf{r}}{dt} dtdf=fdtdr
    这里 ⋅ \cdot 表示点积。

示例

考虑一个二元函数 f ( x , y ) = x 2 + y 2 f(x, y) = x^2 + y^2 f(x,y)=x2+y2,我们要计算它在点 ( 1 , 2 ) (1, 2) (1,2) 处的梯度。首先,计算偏导数:
∂ f ∂ x = 2 x \frac{\partial f}{\partial x} = 2x xf=2x
∂ f ∂ y = 2 y \frac{\partial f}{\partial y} = 2y yf=2y

在点 ( 1 , 2 ) (1, 2) (1,2) 处,这些偏导数的值分别为:
∂ f ∂ x ∣ ( 1 , 2 ) = 2 ⋅ 1 = 2 \left. \frac{\partial f}{\partial x} \right|_{(1,2)} = 2 \cdot 1 = 2 xf (1,2)=21=2
∂ f ∂ y ∣ ( 1 , 2 ) = 2 ⋅ 2 = 4 \left. \frac{\partial f}{\partial y} \right|_{(1,2)} = 2 \cdot 2 = 4 yf (1,2)=22=4

因此,在点 ( 1 , 2 ) (1, 2) (1,2) 处的梯度为:
∇ f ( 1 , 2 ) = ( 2 , 4 ) \nabla f(1, 2) = (2, 4) f(1,2)=(2,4)

应用

梯度在多个学科中都有广泛的应用,包括但不限于:

  1. 物理学:在电场中,电势的梯度给出了电场强度的方向和大小;在重力场中,高度的梯度可以用来确定重力场的方向。
  2. 工程学:在优化问题中,梯度下降算法利用梯度来寻找函数的局部最小值。
  3. 图像处理:在边缘检测算法中,梯度被用来识别图像中的边缘。
  4. 机器学习:在训练神经网络时,梯度被用来调整权重,以最小化损失函数。
  5. 地理信息系统:在地形建模中,高度图的梯度可以用来确定地形的斜率。
4.4.5 散度 (Divergence): ∇ ⋅ V \nabla \cdot \mathbf{V} V

定义

散度 (Divergence) ,是一个 向量场的标量测度 ,表示 从一个特定点流出的向量场的通量密度 。如果有一个三维空间中的向量场 F ( x , y , z ) = ( P ( x , y , z ) , Q ( x , y , z ) , R ( x , y , z ) ) \mathbf{F}(x, y, z) = (P(x, y, z), Q(x, y, z), R(x, y, z)) F(x,y,z)=(P(x,y,z),Q(x,y,z),R(x,y,z)),那么该向量场在点 ( x , y , z ) (x, y, z) (x,y,z) 处的散度定义为:
div  F = ∇ ⋅ F = ∂ P ∂ x + ∂ Q ∂ y + ∂ R ∂ z \text{div }\mathbf{F} = \nabla \cdot \mathbf{F} = \frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z} div F=F=xP+yQ+zR

这里 ∇ ⋅ \nabla \cdot 表示散度算子, ⋅ \cdot ​ 表示点积。

散度算子 ∇ ⋅ v ⃗ \nabla \cdot \mathbf{\vec{v}} v 将偏微分操作应用于矢量场 v ⃗ = ( v ⃗ x , v ⃗ y , v ⃗ z ) \mathbf{\vec{v}} = (\mathbf{\vec{v}}_x, \mathbf{\vec{v}}_y, \mathbf{\vec{v}}_z) v =(v x,v y,v z)。具体为:
∇ ⋅ V = ∂ V x ∂ x + ∂ V y ∂ y + ∂ V z ∂ z (3) \nabla \cdot \mathbf{V} = \frac{\partial V_x}{\partial x} + \frac{\partial V_y}{\partial y} + \frac{\partial V_z}{\partial z}\tag{3} V=xVx+yVy+zVz(3)

简单来说,散度测量的是向量场在某一点的源或汇的强度。如果散度为正,说明该点是一个源(向量场向外流动),如果散度为负,则该点是一个汇(向量场向内流动)

性质

  1. 线性:散度具有线性性质,即如果 F \mathbf{F} F G \mathbf{G} G 是两个向量场,并且 c c c 是常数,那么:
    ∇ ⋅ ( c F + G ) = c ( ∇ ⋅ F ) + ∇ ⋅ G \nabla \cdot (c\mathbf{F} + \mathbf{G}) = c (\nabla \cdot \mathbf{F}) + \nabla \cdot \mathbf{G} (cF+G)=c(F)+G

  2. 散度定理(高斯定理):散度定理建立了向量场的散度与通过闭合表面的通量之间的关系。它表明一个闭合体积内的散度积分等于该闭合表面的通量积分:
    ∭ V ∇ ⋅ F   d V = ∯ S F ⋅ d S \iiint_V \nabla \cdot \mathbf{F} \, dV = \oiint_S \mathbf{F} \cdot d\mathbf{S} VFdV= SFdS

这里的 d V dV dV 表示体积元素, d S d\mathbf{S} dS 表示表面元矢量。

示例

考虑一个简单的向量场 F ( x , y , z ) = ( x , y 2 , z 3 ) \mathbf{F}(x, y, z) = (x, y^2, z^3) F(x,y,z)=(x,y2,z3),我们要计算它在任意点 ( x , y , z ) (x, y, z) (x,y,z) 处的散度。首先,计算各个分量的偏导数:
∂ P ∂ x = ∂ ∂ x ( x ) = 1 \frac{\partial P}{\partial x} = \frac{\partial}{\partial x}(x) = 1 xP=x(x)=1
∂ Q ∂ y = ∂ ∂ y ( y 2 ) = 2 y \frac{\partial Q}{\partial y} = \frac{\partial}{\partial y}(y^2) = 2y yQ=y(y2)=2y
∂ R ∂ z = ∂ ∂ z ( z 3 ) = 3 z 2 \frac{\partial R}{\partial z} = \frac{\partial}{\partial z}(z^3) = 3z^2 zR=z(z3)=3z2

因此,该向量场在任意点 ( x , y , z ) (x, y, z) (x,y,z) 处的散度为:
div  F = 1 + 2 y + 3 z 2 \text{div }\mathbf{F} = 1 + 2y + 3z^2 div F=1+2y+3z2

应用

散度在多个领域中都有广泛的应用,包括但不限于:

  1. 物理学:在电磁学中,麦克斯韦方程组之一就是描述电荷分布的散度。在流体力学中,无源场(如不可压缩流体)的散度为零。
  2. 气象学:在大气科学中,空气流的散度可以帮助预测天气模式,如气旋的形成和发展。
  3. 工程学:在传热学中,温度场的散度可以用来研究热源或热汇。
  4. 计算机图形学:在模拟流体动力学时,散度可用于确保流体的连续性条件被满足。
  5. 地质学:在地下水流动模拟中,散度可以帮助理解地下水流的来源和汇。

散度的概念对于理解向量场的性质以及解决实际问题非常重要。在科学研究和工程应用中,散度常常与其他向量微积分概念一起使用,如旋度和梯度,以全面分析和描述物理现象。

4.4.6 旋度 (Curl): ∇ × V \nabla \times \mathbf{V} ×V

定义

旋度 (Curl) ,是一个 向量场的向量测度 ,用来 描述向量场在某一点周围的旋转效应 。如果有一个三维空间中的向量场 F ( x , y , z ) = ( P ( x , y , z ) , Q ( x , y , z ) , R ( x , y , z ) ) \mathbf{F}(x, y, z) = (P(x, y, z), Q(x, y, z), R(x, y, z)) F(x,y,z)=(P(x,y,z),Q(x,y,z),R(x,y,z)),那么该向量场在点 ( x , y , z ) (x, y, z) (x,y,z) 处的旋度定义为:
curl  F = ∇ × F = ∣ i j k ∂ ∂ x ∂ ∂ y ∂ ∂ z P Q R ∣ \text{curl }\mathbf{F} = \nabla \times \mathbf{F} = \left| \begin{array}{ccc} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ P & Q & R \end{array} \right| curl F=×F= ixPjyQkzR

计算上述行列式的结果为:
curl  F = ( ∂ R ∂ y − ∂ Q ∂ z , ∂ P ∂ z − ∂ R ∂ x , ∂ Q ∂ x − ∂ P ∂ y ) \text{curl }\mathbf{F} = \left( \frac{\partial R}{\partial y} - \frac{\partial Q}{\partial z}, \frac{\partial P}{\partial z} - \frac{\partial R}{\partial x}, \frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) curl F=(yRzQ,zPxR,xQyP)

旋度的结果是一个向量,它的方向由右手定则决定,而其模长表示旋转强度。

旋度算子 ∇ × V \nabla \times \mathbf{V} ×V 是一个矢量运算,用于求矢量场在空间中某一点的旋转性质。也是基于偏微分操作的。对于三维空间中的矢量场 V = ( V x , V y , V z ) \mathbf{V} = (V_x, V_y, V_z) V=(Vx,Vy,Vz),旋度表示为:
∇ × V = ∣ i j k ∂ ∂ x ∂ ∂ y ∂ ∂ z V x V y V z ∣ (4) \nabla \times \mathbf{V} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ V_x & V_y & V_z \\ \end{vmatrix}\tag{4} ×V= ixVxjyVykzVz (4)
展开行列式,我们得到:
∇ × V = ( ∂ V z ∂ y − ∂ V y ∂ z ) i − ( ∂ V z ∂ x − ∂ V x ∂ z ) j + ( ∂ V y ∂ x − ∂ V x ∂ y ) k (5) \nabla \times \mathbf{V} = \left( \frac{\partial V_z}{\partial y} - \frac{\partial V_y}{\partial z} \right) \mathbf{i} - \left( \frac{\partial V_z}{\partial x} - \frac{\partial V_x}{\partial z} \right) \mathbf{j} + \left( \frac{\partial V_y}{\partial x} - \frac{\partial V_x}{\partial y} \right) \mathbf{k}\tag{5} ×V=(yVzzVy)i(xVzzVx)j+(xVyyVx)k(5)
也即
∇ × V = ( ∂ V z ∂ y − ∂ V y ∂ z , ∂ V x ∂ z − ∂ V z ∂ x , ∂ V y ∂ x − ∂ V x ∂ y ) (6) \nabla \times \mathbf{V} = \left( \frac{\partial V_z}{\partial y} - \frac{\partial V_y}{\partial z}, \frac{\partial V_x}{\partial z} - \frac{\partial V_z}{\partial x}, \frac{\partial V_y}{\partial x} - \frac{\partial V_x}{\partial y} \right)\tag{6} ×V=(yVzzVy,zVxxVz,xVyyVx)(6)

这给出了矢量场 V \mathbf{V} V在每一点上的旋度。这种表示方法经常在电磁学和流体动力学中使用。

性质

  1. 线性:旋度同样具有线性性质,即如果 F \mathbf{F} F G \mathbf{G} G 是两个向量场,并且 c c c 是常数,那么:
    ∇ × ( c F + G ) = c ( ∇ × F ) + ∇ × G \nabla \times (c\mathbf{F} + \mathbf{G}) = c (\nabla \times \mathbf{F}) + \nabla \times \mathbf{G} ×(cF+G)=c(×F)+×G

  2. 斯托克斯定理:斯托克斯定理建立了一个闭合曲面上的旋度通量与沿着曲面边界曲线的环路积分之间的关系。它表明一个闭合曲面内的旋度积分等于该曲面边界上的环路积分:
    ∬ S ( ∇ × F ) ⋅ d S = ∮ ∂ S F ⋅ d r \iint_S (\nabla \times \mathbf{F}) \cdot d\mathbf{S} = \oint_{\partial S} \mathbf{F} \cdot d\mathbf{r} S(×F)dS=SFdr

这里的 d S d\mathbf{S} dS 表示曲面元矢量, d r d\mathbf{r} dr 表示边界曲线上的微元向量。

示例

考虑一个向量场 F ( x , y , z ) = ( y z , x z , x y ) \mathbf{F}(x, y, z) = (yz, xz, xy) F(x,y,z)=(yz,xz,xy),我们要计算它在任意点 ( x , y , z ) (x, y, z) (x,y,z) 处的旋度。首先,计算各个分量的偏导数:
∂ R ∂ y = ∂ ∂ y ( x y ) = x \frac{\partial R}{\partial y} = \frac{\partial}{\partial y}(xy) = x yR=y(xy)=x
∂ Q ∂ z = ∂ ∂ z ( x z ) = x \frac{\partial Q}{\partial z} = \frac{\partial}{\partial z}(xz) = x zQ=z(xz)=x
∂ P ∂ z = ∂ ∂ z ( y z ) = y \frac{\partial P}{\partial z} = \frac{\partial}{\partial z}(yz) = y zP=z(yz)=y
∂ R ∂ x = ∂ ∂ x ( x y ) = y \frac{\partial R}{\partial x} = \frac{\partial}{\partial x}(xy) = y xR=x(xy)=y
∂ Q ∂ x = ∂ ∂ x ( x z ) = z \frac{\partial Q}{\partial x} = \frac{\partial}{\partial x}(xz) = z xQ=x(xz)=z
∂ P ∂ y = ∂ ∂ y ( y z ) = z \frac{\partial P}{\partial y} = \frac{\partial}{\partial y}(yz) = z yP=y(yz)=z

因此,该向量场在任意点 ( x , y , z ) (x, y, z) (x,y,z) 处的旋度为:
curl  F = ( z − y , x − x , y − z ) = ( z − y , 0 , y − z ) \text{curl }\mathbf{F} = \left( z - y, x - x, y - z \right) = (z - y, 0, y - z) curl F=(zy,xx,yz)=(zy,0,yz)

应用

旋度在多个领域中都有广泛的应用,包括但不限于:

  1. 物理学:在电磁学中,麦克斯韦方程组之一就是描述磁场的旋度。在流体力学中,旋度可以用来描述流体的涡旋。
  2. 气象学:在大气科学中,风速场的旋度可以帮助预测风暴和旋风的发生。
  3. 工程学:在流体动力学中,旋度可以用来研究涡流和旋涡的形成。
  4. 计算机图形学:在模拟流体动力学时,旋度可以用来创建更加真实感的流动效果。
  5. 地球物理学:在研究地磁场时,旋度可以帮助了解地磁异常区域。

旋度的概念对于理解向量场中的旋转特性以及解决实际问题非常重要。在科学研究和工程应用中,旋度通常与其他向量微积分概念一起使用,如散度和梯度,以全面分析和描述物理现象。

4.4.7 拉普拉斯算子 (Laplacian): Δ f = ∇ ⋅ ∇ f = ∇ 2 f \Delta f = \nabla \cdot \nabla f = \nabla^2 f Δf=f=2f

定义

拉普拉斯算子(Laplacian) ,是一个常见的微分算子,用于 衡量一个标量函数在某一点上的平均变化率 。它在数学、物理和工程等多个领域中都有广泛应用。对于一个标量函数 f ( x 1 , x 2 , … , x n ) f(x_1, x_2, \ldots, x_n) f(x1,x2,,xn),拉普拉斯算子定义为 函数的所有二阶偏导数之和
Δ f = ∇ ⋅ ∇ f = ∑ i = 1 n ∂ 2 f ∂ x i 2 \Delta f = \nabla \cdot \nabla f = \sum_{i=1}^{n} \frac{\partial^2 f}{\partial x_i^2} Δf=f=i=1nxi22f

在三维空间中,拉普拉斯算子可以写作:
Δ f = ∂ 2 f ∂ x 2 + ∂ 2 f ∂ y 2 + ∂ 2 f ∂ z 2 \Delta f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2} Δf=x22f+y22f+z22f

这里 ∇ ⋅ ∇ \nabla \cdot \nabla 表示先对函数 f f f 应用梯度算子 ∇ \nabla 得到一个向量,然后对该向量应用散度算子 ∇ ⋅ \nabla \cdot

性质

  1. 线性:拉普拉斯算子是一个线性算子,即如果 f f f g g g 是两个函数,并且 c c c 是常数,那么:
    Δ ( c f + g ) = c Δ f + Δ g \Delta (cf + g) = c\Delta f + \Delta g Δ(cf+g)=cΔf+Δg

  2. 作用于向量场:虽然拉普拉斯算子最常应用于标量函数,但它也可以作用于向量场。对于一个向量场 F = ( F 1 , F 2 , … , F n ) \mathbf{F} = (F_1, F_2, \ldots, F_n) F=(F1,F2,,Fn),拉普拉斯算子作用于 F \mathbf{F} F 的结果是一个向量场,每个分量是对应的拉普拉斯算子作用于 F \mathbf{F} F 的分量:
    Δ F = ( Δ F 1 , Δ F 2 , … , Δ F n ) \Delta \mathbf{F} = (\Delta F_1, \Delta F_2, \ldots, \Delta F_n) ΔF=(ΔF1,ΔF2,,ΔFn)

  3. 球坐标系下的形式:在球坐标系中,拉普拉斯算子的形式略有不同,对于一个标量函数 u ( r , θ , ϕ ) u(r, \theta, \phi) u(r,θ,ϕ),拉普拉斯算子可以写为:
    Δ u = 1 r 2 ∂ ∂ r ( r 2 ∂ u ∂ r ) + 1 r 2 sin ⁡ θ ∂ ∂ θ ( sin ⁡ θ ∂ u ∂ θ ) + 1 r 2 sin ⁡ 2 θ ∂ 2 u ∂ ϕ 2 \Delta u = \frac{1}{r^2} \frac{\partial}{\partial r} \left( r^2 \frac{\partial u}{\partial r} \right) + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left( \sin \theta \frac{\partial u}{\partial \theta} \right) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2 u}{\partial \phi^2} Δu=r21r(r2ru)+r2sinθ1θ(sinθθu)+r2sin2θ1ϕ22u

示例

考虑一个二元函数 f ( x , y ) = x 2 − y 2 f(x, y) = x^2 - y^2 f(x,y)=x2y2,我们要计算它在任意点 ( x , y ) (x, y) (x,y) 处的拉普拉斯算子。首先,计算各个二阶偏导数:
∂ 2 f ∂ x 2 = ∂ ∂ x ( ∂ f ∂ x ) = ∂ ∂ x ( 2 x ) = 2 \frac{\partial^2 f}{\partial x^2} = \frac{\partial}{\partial x} \left( \frac{\partial f}{\partial x} \right) = \frac{\partial}{\partial x}(2x) = 2 x22f=x(xf)=x(2x)=2
∂ 2 f ∂ y 2 = ∂ ∂ y ( ∂ f ∂ y ) = ∂ ∂ y ( − 2 y ) = − 2 \frac{\partial^2 f}{\partial y^2} = \frac{\partial}{\partial y} \left( \frac{\partial f}{\partial y} \right) = \frac{\partial}{\partial y}(-2y) = -2 y22f=y(yf)=y(2y)=2

因此,该函数在任意点 ( x , y ) (x, y) (x,y) 处的拉普拉斯算子为:
Δ f = 2 − 2 = 0 \Delta f = 2 - 2 = 0 Δf=22=0

这表明函数 f ( x , y ) = x 2 − y 2 f(x, y) = x^2 - y^2 f(x,y)=x2y2 是调和函数(即它的拉普拉斯算子为零)。

应用

拉普拉斯算子在多个领域中都有广泛的应用,包括但不限于:

  1. 物理学:在电动力学中,拉普拉斯方程和泊松方程描述了静电场和静磁场的分布。在热传导问题中,拉普拉斯算子用于描述温度场的变化
  2. 工程学:在信号处理中,拉普拉斯算子可以用来去除噪声。在图像处理中,拉普拉斯算子可以用来检测图像中的边缘
  3. 流体力学:在流体动力学中,拉普拉斯算子用于描述不可压缩流体的势流
  4. 量子力学:薛定谔方程包含拉普拉斯算子,用于描述量子粒子的波函数
  5. 数学:在偏微分方程理论中,拉普拉斯算子是很多重要方程的核心组成部分。

拉普拉斯算子的概念是理解和解决各种实际问题的重要工具,特别是在需要分析函数的局部行为或求解偏微分方程时。

拉普拉斯算子 ∇ 2 f \nabla^2 f 2f 是梯度的散度,其表达式基于二次偏微分:
∇ 2 f = ∂ 2 f ∂ x 2 + ∂ 2 f ∂ y 2 + ∂ 2 f ∂ z 2 (7) \nabla^2 f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2}\tag{7} 2f=x22f+y22f+z22f(7)

从上述描述中可以看出,偏微分方程算子是通过在各个方向上应用偏微分操作来定义的。这些算子为我们提供了一种方便的方式来描述和分析物理过程中的变化。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值