30天挑战翻译100篇论文
坚持不懈,努力改变,在翻译中学习,在学习中改变,在改变中成长…
A New Method of Automatic Modulation Recognition Based on Dimension Reduction
一种基于降维的自动调制识别新方法
Hui Wang, LiLi Guo
College of Information and Communication Engineering
Harbin Engineering University
Harbin, China
wanghui@hrbeu.edu.cn
摘要—为了提高低信噪比(SNR)下信号调制识别方法的识别率,提出了一种调制识别方法。 在本文中,我们研究了通过人工神经网络(ANN)进行的自动调制识别。 实施和设计7种数字调制分别是:2FSK,4FSK,8FSK,BPSK,QPSK,MSK和2ASK。 通过主成分分析(PCA)进行降维后的循环频谱被选为基于ANN的数字调制识别器的关键特征。 我们通过加性高斯白噪声(AWGN)破坏了信号,以测试算法。 仿真结果表明,人工神经网络可以对当前发展状态的信号进行分类。
关键词:自动调制识别; 人工神经网络; 循环光谱 主成分分析
1.简介
由于频谱有限,为了满足各种用户的需求,并更充分地利用频率资源,信号以不同的方式进行调制。
多年来,调制识别的重要性日益提高[1]。 在军事和商业应用中已经进行了广泛的工作[2],它也是智能信号分析和处理中的关键技术[3]。
通常,调制识别方法分为两大类:人工识别方法和自动调制识别方法。 人工识别方法是将信号从高频转换为中频,然后使用调制解调器对信号进行解调,然后使用耳机和频谱分析仪等相关仪器来判断解调结果。 然而,人工识别方法需要丰富的经验和知识,并且当符号率较高时,识别率是不准确的。 自动调制识别方法分为三个主要过程:数据预处理,特征提取和分类决策。 数据预处理是对信号进行下变频后的载波和符号率的估计。
特征提取的用途是转换原始数据,以提取一些可以更容易分类的特征。分类决策是根据提取的特征来判断调制类型。
自动调制识别采用了许多功能,包括小波系数,高阶统计量(HOS)等。同时,还采用了不同的方法来进行分类决策,例如概率密度函数(PDF)匹配方法,无监督聚类技术, 和支持向量机(SVM)。
然而,上述调制识别技术要么在计算上很麻烦,要么导致性能不令人满意,因此仍然需要新的鲁棒的有效调制识别方案。
在本文中,我们提出了一种基于循环频谱特征和人工神经网络的信号调制自动识别方法。 循环频谱作为信号的特性,对噪声不敏感,有利于低信噪比环境下的信号调制识别。 但是,信号的循环频谱是大量数据,如果直接将其识别为特征,则会有很多冗余信息。 一方面,它增加了复杂性,另一方面,它可能会干扰最终的识别。 因此,本文采用PCA降维方法来减小循环频谱特征的维数。 对于分类器,我们选择人工神经网络作为分类器。 神经网络分类器具有很强的模式识别能力,可以很好地解决复杂的非线性问题。 同时,它具有更好的鲁棒性,通常用于调制识别。
本文的其余部分安排如下。
第二部分是系统模型,其中我们介绍了信号表达和研究环境。 第三节将降维后的循环光谱描述为特征。 第四节介绍了基于神经网络的自动调制分类的分类器,并讨论了一些网络参数。 实验在第五部分进行,最后第六部分总结了论文。
2. 系统模型
像许多研究一样,在本文中,我们还将假设完美的频率偏移和时间偏移恢复。 我们还将假设信道是频率非选择性的,具有加性高斯白噪声(AWGN)[5]。 接收信号的一般表达式为 x ( t ) x(t) x(t),其表达式为:
其中h (t)是无噪声的接收信号,n( t)是高斯噪声。 接收到的信号被送入我们的自动调制分类系统,通过特征提取和分类决策(由于模拟,预处理将被省略),调制类型可以从系统中输出。 系统框图如图1所示。
3. 特征提取
特征提取起着非常重要的作用,直接关系到CR中信号识别算法的可行性。
这些功能必须对数字调制类型敏感,而对SNR变化不敏感。 [6]在本节中,我们通过提取一些不同的分量来减小循环频谱投影的大小。 这些分量可以表示为d维向量,我们将这些向量视为特征。
-
A.循环频谱
自动调制识别的第一步是估计接收信号的循环频谱。 已经证明,循环频谱检测可以用于许多类型的调制[7]。 我们将信号的自相关表示为 R x R_x