Finding Action Tubes - cvpr - 2015

该篇CVPR 2015论文介绍了如何通过Spatial-CNN和Motion-CNN定位视频中的Action Tubes。首先,通过Selective Search产生区域提案,并基于IoU阈值筛选正负样本。然后,使用预训练的CNN模型初始化并提取特征,训练线性SVM进行动作检测。最终,通过相邻帧中最高得分的region连接形成Action Tubes,并进行视频级别的动作分类。这种方法结合了Appearance和Motion信号,但可能在多actor场景中表现不佳。
摘要由CSDN通过智能技术生成
论文题目Finding Action Tubes,  论文链接
该篇论文是CVPR 2015的, 主要讲述了action tube的localization.

直接看图说话,  该论文的核心思想/步骤可以分为两个components:
  1 Action detection at every frame of the video
  2 Linked detection in time produce action tubes
下面就分开来说每个component.
Action detection at every frame of the video
  大概思想就是: 训练Spatial-CNN和Motion-CNN来提feature, 在feature上为每个类别训练线性svm.         
  具体步骤如下:
     a.  找出each frame的interesting regions. 基于ground-truth的region及action label, 构建正负样本.
             这里用IoU的方法: >0.5 为positive region, <0.3为negative region.
            为什么要这样做呢? 个人觉得论文里面的action tube是针对里面的actor来弄的, 
             也就是对视频里面的某个actor进行action的跟踪和action 分类. 
        
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值