convolutional pose machines, CVPR 2016.
论文:http://arxiv.org/abs/1602.00134
project:https://github.com/shihenw/convolutional-pose-machines-release
=====
看到这篇论文,心里还是有点难受的,当初做pose的毕设时,为什么就不参考下这篇掉渣天的论文呢?
别问我为什么!!!
=====
个人理解
从这个框架来说,类似multi-stage的cascaded network(如deeppose,lecunnet),但是该框架不同于以往的cascaded network:
1 是全卷积网络(FCN),使得整个网络是可导的,也就是意味着可以joint training;
2 不需要显式构建spatial model(或者递归神经网络),通过加大网络的感受野的方式来学习parts之间的空间几何约束关系;
3 不需要post-process
4 容易扩展到multi-person的pose estimation
5 不需要显式利用prior
=====
转入正题: