convolutional pose machines, CVPR 2016

本文介绍了CVPR 2016上的论文《convolutional pose machines》。该工作提出了一种全卷积网络(FCN)结构,用于多阶段的人体姿态估计,无需显式的空间模型或后处理步骤。网络通过增加感受野学习部分间的几何约束,且能进行端到端训练,易于扩展到多人姿态估计。此外,中间监督和序列结构有助于解决深层网络的梯度消失问题,并能隐式建模部分之间的长距离依赖关系。实验结果显示该方法具有优秀的效果。
摘要由CSDN通过智能技术生成

convolutional pose machines, CVPR 2016.

论文:http://arxiv.org/abs/1602.00134

project:https://github.com/shihenw/convolutional-pose-machines-release

=====

看到这篇论文,心里还是有点难受的,当初做pose的毕设时,为什么就不参考下这篇掉渣天的论文呢?

别问我为什么!!!委屈


=====

个人理解

从这个框架来说,类似multi-stage的cascaded network(如deepposelecunnet),但是该框架不同于以往的cascaded network:

1 是全卷积网络(FCN),使得整个网络是可导的,也就是意味着可以joint training;

2 不需要显式构建spatial model(或者递归神经网络),通过加大网络的感受野的方式来学习parts之间的空间几何约束关系;

3 不需要post-process

4 容易扩展到multi-person的pose estimation

5 不需要显式利用prior


=====

转入正题:

评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值