Heterogeneous Multi-task Learning for Human Pose Estimation with Deep Convolutional Neural Network

该论文介绍了使用深度卷积神经网络进行人体姿态估计的异构多任务学习方法。首先,通过行人检测裁剪图像,然后在裁剪图像上进行姿态估计。网络输入包括裁剪的图像和关节坐标标签,采用归一化处理。训练过程中,同时优化关节回归器和部分检测器的损失函数。测试时仅使用关节回归器预测结果。这种方法通过多任务学习提高性能,但存在通过全连接层直接回归坐标的问题。
摘要由CSDN通过智能技术生成
论文题目Heterogeneous Multi-task Learning for Human Pose Estimation with Deep Convolutional Neural Network,  链接
该篇论文是IJCV 2014的, 文章的核心multi-tasks的joint traning. 
直接看图说话,  该论文的核心思想/步骤可以分为两个components:

  1对图像里面的person进行detection, 以便裁剪出图像里面的人.
        这个显然是必要的, 尤其是图像大而person小, 或者图像里面的人较多时(>= 2 people)
        由于这部分不是该论文里面的重点, 这点在此就不阐述了, 
         有兴趣的童鞋, 可以自行看一些person detection(或者行人检测)的论文之类的.
  2该论文的重头戏, pose estimation in still image. 下面将详细阐述该部分

Pose Estimation:

还是直接看图:
  1上图中输入是裁剪好的图像(根据由human body detector得到的bounding box around the human来获取)
  2 显然输入除了cropped image还需要对应的labels. 这里的labels就是对应cropped image的joints'/parts'的coordinates.
      显然为了获得更好的perfomace, 往往需要对labels进行归一化. 论文里的归一化比较简单:
  
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值