BETA函数的简单证明

定义:
在这里插入图片描述
性质:
在这里插入图片描述
beta函数的求解需要依赖于gamma函数,且满足以下公式
在这里插入图片描述
证明:
在这里插入图片描述
划线部分存的替换在一定的技巧性,不需要掌握。

通过以上建立了beta函数与gamma函数之间的联系,解决此类积分问题就有了很好的工具。

  • 1
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
Beta函数是指定义在区间 $[0,1]$ 上的两个正实数 $\alpha$ 和 $\beta$ 的函数,它的表达式为: $$\text{B}(\alpha,\beta)=\int_0^1 t^{\alpha-1}(1-t)^{\beta-1} \mathrm{d}t$$ Beta函数证明可以通过分部积分来进行。我们先令 $u=t^{\alpha-1}$,$\mathrm{d}v=(1-t)^{\beta-1}\mathrm{d}t$,则有: $$\mathrm{d}u=(\alpha-1)t^{\alpha-2}\mathrm{d}t$$ $$v=-\frac{1}{\beta}(1-t)^{\beta}$$ 对于区间 $[0,1]$,应用分部积分公式: $$\int_0^1 u\mathrm{d}v=uv|_0^1-\int_0^1 v\mathrm{d}u$$ 带入 $u$ 和 $v$ 的表达式,可以得到: $$\begin{aligned} \int_0^1 t^{\alpha-1}(1-t)^{\beta-1}\mathrm{d}t &= -\frac{1}{\beta}t^{\alpha-1}(1-t)^{\beta}|_0^1 + \frac{\alpha-1}{\beta}\int_0^1 t^{\alpha-2}(1-t)^{\beta-1}\mathrm{d}t \\ &= \frac{\alpha-1}{\beta}\int_0^1 t^{\alpha-2}(1-t)^{\beta-1}\mathrm{d}t \end{aligned}$$ 然后,我们再次应用分部积分公式,令 $u=t^{\alpha-2}$,$\mathrm{d}v=(1-t)^{\beta-1}\mathrm{d}t$,则有: $$\mathrm{d}u=(\alpha-2)t^{\alpha-3}\mathrm{d}t$$ $$v=-\frac{1}{\beta}(1-t)^{\beta}$$ 继续进行分部积分,可以得到: $$\begin{aligned} \int_0^1 t^{\alpha-1}(1-t)^{\beta-1}\mathrm{d}t &= \frac{\alpha-1}{\beta} \cdot \frac{\alpha-2}{\beta-1} \int_0^1 t^{\alpha-3}(1-t)^{\beta-2}\mathrm{d}t \\ &= \frac{\alpha-1}{\beta} \cdot \frac{\alpha-2}{\beta-1} \cdot \frac{\alpha-3}{\beta-2} \int_0^1 t^{\alpha-4}(1-t)^{\beta-3}\mathrm{d}t \\ &\cdots \\ &= \frac{\Gamma(\alpha)\Gamma(\beta)}{\Gamma(\alpha+\beta)} \end{aligned}$$ 这就是 Beta 函数证明过程。其中,$\Gamma(x)$ 表示欧拉函数,它的表达式为: $$\Gamma(x)=\int_0^{\infty} t^{x-1} e^{-t} \mathrm{d}t$$

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值