beta分布的推导与理解

本文深入探讨Beta分布,解释其作为概率的概率分布的性质,通过对比与二项分布阐述其适用性。Beta分布常用于建模概率,如点击率、转化率等,其参数α和β影响分布形状。当α和β足够大且相等时,近似正态分布。此外,Beta分布是二项分布的共轭先验,简化贝叶斯统计计算。文章还详细推导了Beta分布,并介绍了归一化常数和Gamma函数的关系。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.概述

Beta 分布是关于概率的概率分布。例如,我们可以使用它来对概率进行建模:包括但不限于广告的点击率、网站上实际购买的客户的转化率、读者对博客点赞的可能性、候选人竞选成功的概率等等依此类推。本文通过对比贝塔分布与二项分布,详细推导贝塔分布的由来。

2.Beta分布的直观解释

因为 Beta 分布对概率进行建模,所以它的定义域应该在0和1之间,它的pdf如下。

                

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

scott198512

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值