目录
import numpy as np
import pandas as pd
s=pd.Series({'考号':'10182156','姓名':'王小丫','科目一':97,'科目二':85})
print(s)
>>> 考号 10182188
姓名 王小丫
科目一 97
科目二 85
dtype: object
1.修改元素值
通过索引名单个修改
s['考号']='20220408'
>>> 考号 20220408
s['考号']=95 #重新赋值后数据类型被改变
>>> 考号 95
type(s['考号']
>>> <class 'int'>
索引名离散访问,分别修改
s['考号','科目二']=1,98
>>> 考号 1
科目二 98
索引名离散访问,批量修改
s[2:]+=2 #2扩展依次相加
>>> 科目一 99
科目二 100
s['考号','科目二']=95
>>> 考号 95
科目二 95
2.合并(添加)元素值
(1)类似字典,在Series本身追加一个元素
s['科目三']='65'
>>> 考号 1
姓名 王小丫
科目一 95
科目二 95
科目三 65
dtype: object
(2)Series.append(to_append,ignore_index=False)
返回一个新的、被合并后的Series对象,原Series对象内容不变
to_append:单个Series或者Series组成的列表或元组
ignore_index:忽略原有索引名
False:默认保持原有索引名,缺省索引名的会将索引号转成索引名
True:忽略全部索引名,将结果中新的索引号转成索引名
s1=s.append(pd.Series({'考场':'交警大队'}))
print(s1)
>>> 考号 1
姓名 王小丫
科目一 95
科目二 95
科目三 65
考场 交警大队
dtype: object
print(s)
>>> 考号 1
姓名 王小丫
科目一 95
科目二 95
科目三 65
dtype: object
3.删除元素
Series.drop(labels=None,inplace=False)
labels:需删除的元素的索引名。单一、离散索引名放入列表或元组中。
inplace:(1)True:原Series内直接删除,原Series发生改变。(2)False:返回一个新的Series对象,原对象不改变。
s1.drop(['考场','科目二'],inplace=False)
print(s1)
>>> 考号 1
姓名 王小丫
科目一 95
科目二 95
科目三 65
考场 交警大队
dtype: object
s1.drop(['考场','科目二'],inplace=True)
print(s1)
>>> 考号 1
姓名 王小丫
科目一 99
科目三 65
dtype: object