EM@组合数学@朱世杰恒等式@曲棍球恒等式Hockey-stick identity

refs

朱世杰恒等式(曲棍球恒等式)👺

  • 朱世杰恒等式是组合数的一阶求和公式。元朝数学家朱世杰在《四元玉鉴》中,利用垛积术、招差术给出:
    ∑ i = a n ( i a ) = ( n + 1 a + 1 ) \sum_{i=a}^{n} \binom{i}{a} = \binom{n+1}{a+1} i=an(ai)=(a+1n+1)

将上式记为式(0)

变形

  • 若以 m − 1 m-1 m1 n n n ,得到式(1)
    ∑ i = a m − 1 ( i a ) = ( m a + 1 ) \sum_{i=a}^{m-1} \binom{i}{a} = \binom{m}{a+1} i=am1(ai)=(a+1m)

  • 与上式作差,写成:记为式(2)
    ∑ i = m n ( i a ) = ( n + 1 a + 1 ) − ( m a + 1 ) \sum_{i=m}^{n} \binom{i}{a} = \binom{n+1}{a+1} - \binom{m}{a+1} i=mn(ai)=(a+1n+1)(a+1m)

证明

递归方法

欲证式(0),即证式(2),而式(2)移项得到式(3)
( m a + 1 ) + ∑ i = m n ( i a ) = ( n + 1 a + 1 ) \binom{m}{a+1}+\sum_{i=m}^{n} \binom{i}{a} = \binom{n+1}{a+1} (a+1m)+i=mn(ai)=(a+1n+1)
将其展开得到式(4)如下:
( m a + 1 ) + ( m a ) + ( m + 1 a ) + ⋯ + ( n a ) = ( n + 1 a + 1 ) , \binom{m}{a+1} + \binom{m}{a} + \binom{m+1}{a} + \cdots + \binom{n}{a} =\binom{n+1}{a+1}, (a+1m)+(am)+(am+1)++(an)=(a+1n+1),
最后证明式(0)等价于证明式(4)

可以反复使用帕斯卡法则合并式(4)等号左边首两项,最终得到其等于等号右边的结论

帕斯卡法则如下:
( n − 1 k ) + ( n − 1 k − 1 ) = ( n k ) \binom{n-1}{k} + \binom{n-1}{k-1} = \binom{n}{k} (kn1)+(k1n1)=(kn)
从排列组合的角度(构造适当的排列组合问题模型)容易证明该等式

组合方法

n n n 元集 S = { a 1 , a 2 , a 3 , … , a n } S = \{a_1, a_2, a_3, \ldots, a_n\} S={a1,a2,a3,,an} r r r 个元素,有 ( n r ) \binom{n}{r} (rn) 种方法。将这些方法分类:

  • 必有 a 1 a_1 a1 时,再在 n − 1 n-1 n1 个元素中选 r − 1 r-1 r1 个元素;这类方法有 ( n − 1 r − 1 ) \binom{n-1}{r-1} (r1n1)

  • 排除 a 1 a_{1} a1时,在 n − 1 n-1 n1个元素中选 r r r个元素,这类方法有 ( n − 1 r ) \binom{n-1}{r} (rn1)种;我们在这种大类情况在继续细分

    • 排除 a 1 a_1 a1,且必有 a 2 a_2 a2 时,在 n − 2 n-2 n2 个元素中选 r − 1 r-1 r1 个元素;这类方法有 ( n − 2 r − 1 ) \binom{n-2}{r-1} (r1n2)
    • 排除 a 1 a_1 a1, 并排除 a 2 a_{2} a2(即排除 a 1 , a 2 a_1,a_2 a1,a2),在 n − 2 n-2 n2个元素中选 r r r个元素,这类方法有 ( n − 2 r ) \binom{n-2}{r} (rn2)
    • 排除 a 1 , a 2 a_{1},a_{2} a1,a2,情况下
      • 包含 a 3 a_{3} a3的方法数有 ( n − 3 r − 1 ) \binom{n-3}{r-1} (r1n3)
      • 排除 a 3 a_{3} a3,的方法数有 ( n − 3 r ) \binom{n-3}{r} (rn3)
      • 排除 a 1 , a 2 , a 3 a_{1},a_{2},a_{3} a1,a2,a3情况下
        • 包含 a 4 a_{4} a4的方法数 ( n − 4 r − 1 ) \binom{n-4}{r-1} (r1n4)
        • 排除 a 4 a_{4} a4的方法数 ( n − 4 r ) \binom{n-4}{r} (rn4)
  • 如此类推,直到必有 a n − r + 1 a_{n-r+1} anr+1 时,在 r − 1 r-1 r1 个元素中选 r − 1 r-1 r1 个元素,此时方法数为 1 1 1,为了统一,仍然记为 ( r − 1 r − 1 ) \binom{r-1}{r-1} (r1r1)

    • 这里 a n − r + 1 a_{n-r+1} anr+1的下标如何确定?对于 a 1 ⋯ a x ⋯ a n a_{1}\cdots{a_{x}}\cdots{a_{n}} a1axan,最后一次类推处理,要求 a x ⋯ a n a_{x}\cdots_{a_{n}} axan r r r个元素,那么 n − x + 1 n-x+1 nx+1 a x ⋯ a n a_{x}\cdots{a_{n}} axan的元素数量,所以令 n − x + 1 = r n-x+1=r nx+1=r,得出 x = n − r + 1 x=n-r+1 x=nr+1
    • 不过在这里我们不是非得求出 x x x,只需要知道存在这么一个 x x x使得剩余元素恰好足够 r r r
  • 整理
    ( n − 1 r − 1 ) + ( n − 2 r − 1 ) + ⋯ + ( r − 1 r − 1 ) = ( n r ) \binom{n-1}{r-1}+\binom{n-2}{r-1}+\cdots+\binom{r-1}{r-1}=\binom{n}{r} (r1n1)+(r1n2)++(r1r1)=(rn)

将上述等式改写为求和式表示(可以先将等式左边调整一下顺序在改写为求和式)
( r − 1 r − 1 ) + ⋯ + ( n − 2 r − 1 ) + ( n − 1 r − 1 ) \binom{r-1}{r-1}+\cdots+\binom{n-2}{r-1}+\binom{n-1}{r-1} (r1r1)++(r1n2)+(r1n1)

∑ k = r − 1 n − 1 ( k r − 1 ) = ( n r ) \sum\limits_{k=r-1}^{n-1}\binom{k}{r-1}=\binom{n}{r} k=r1n1(r1k)=(rn)

为了形式的美观性,由求和式的性质特点,等价变形求和指标,得到
∑ k = r n ( k − 1 r − 1 ) = ( n r ) \sum_{k=r}^{n} \binom{k-1}{r-1} = \binom{n}{r} k=rn(r1k1)=(rn)
或者求和指标变量用 i i i来表示,总结如下

公式形式总结

  1. ∑ i = a n ( i − 1 a − 1 ) = ( n a ) \sum_{i=a}^{n} \binom{i-1}{a-1} = \binom{n}{a} i=an(a1i1)=(an)
  2. ∑ i = a n ( i a ) = ( n + 1 a + 1 ) \sum_{i=a}^{n} \binom{i}{a} = \binom{n+1}{a+1} i=an(ai)=(a+1n+1)
  • 如果将恒等式的左右两端对调,可以说,朱世杰恒等式将一个组合数 ( n a ) \binom{n}{a} (an)展开成 ( n − 1 r − 1 ) + ( n − 2 r − 1 ) + ⋯ + ( r − 1 r − 1 ) \binom{n-1}{r-1}+\binom{n-2}{r-1}+\cdots+\binom{r-1}{r-1} (r1n1)+(r1n2)++(r1r1) n − a + 1 n-a+1 na+1

    • 形式2中,将左边的求和式的上标和下标分别加一,分别作为等式右边 ( r 1 r 2 ) \binom{r_1}{r_2} (r2r1)中的 r 1 , r 2 r_1,r_2 r1,r2
  • 形式1和形式2其实是完全等价的

    • n = n − 1 n=n-1 n=n1, a = a − 1 a=a-1 a=a1,带入到形式2,并等价调整求和号的上下标以及被求和表达式,就得到形式1
    • 或者令 n = n + 1 n=n+1 n=n+1, a = a + 1 a=a+1 a=a+1,带入形式1,也可以得到形式2
      • ∑ i = a + 1 n + 1 ( i − 1 a ) \sum\limits_{i=a+1}^{n+1}\binom{i-1}{a} i=a+1n+1(ai1)= ∑ i = a n ( i a ) \sum\limits_{i=a}^{n}\binom{i}{a} i=an(ai)= ( n + 1 a + 1 ) \binom{n+1}{a+1} (a+1n+1)

应用

基础套用

利用朱世杰恒等式计算 ( 4 2 ) \binom{4}{2} (24)

分别用形式1,2计算

  1. ( 4 2 ) \binom{4}{2} (24)= ∑ i = 2 4 ( i − 1 1 ) \sum\limits_{i=2}^{4}\binom{i-1}{1} i=24(1i1)= ( 1 1 ) + ( 2 1 ) + ( 3 1 ) \binom{1}{1}+\binom{2}{1}+\binom{3}{1} (11)+(12)+(13)= 6 6 6
  2. ( 4 2 ) \binom{4}{2} (24)= ( 3 + 1 1 + 1 ) \binom{3+1}{1+1} (1+13+1)= ∑ i = 1 3 ( i 1 ) \sum\limits_{i=1}^{3}\binom{i}{1} i=13(1i)= 6 6 6

等幂求和问题

例如:
∑ i = 1 n i = ∑ i = 1 n ( i 1 ) = ( n + 1 2 ) \sum_{i=1}^{n} i = \sum_{i=1}^{n} \binom{i}{1} = \binom{n+1}{2} i=1ni=i=1n(1i)=(2n+1)

∑ i = 1 n i ( i + 1 ) \sum_{i=1}^{n} i(i+1) i=1ni(i+1)= 2 ∑ i = 1 n ( i + 1 2 ) 2 \sum_{i=1}^{n} \binom{i+1}{2} 2i=1n(2i+1)= 2 ∑ i = 2 n + 1 ( i 2 ) 2\sum\limits_{i=2}^{n+1}\binom{i}{2} 2i=2n+1(2i)= 2 ( n + 2 3 ) 2 \binom{n+2}{3} 2(3n+2)

上面的例子中出现的 ∑ i = 1 n ( i + 1 2 ) \sum_{i=1}^{n} \binom{i+1}{2} i=1n(2i+1),求和符号和被求和式的形式不符合朱世杰恒等式的基础(标准)形式,我们根据求和符号的变形特点对该式子变形,将求和号的指标变量 i i i的起始值改为 2 2 2(也就是增加1,此时需要调整商标 n n n,也增加1,最后将求和式中的指标变量减去1)

类似的方法,计算 ∑ i = 1 n ( i + 1 3 ) \sum_{i=1}^{n} \binom{i+1}{3} i=1n(3i+1)= ∑ i = 3 n + 2 ( i − 1 3 ) \sum_{i=3}^{n+2} \binom{i-1}{3} i=3n+2(3i1)= ( n + 3 4 ) \binom{n+3}{4} (4n+3)

遗传算法优化BP神经网络(GABP)是一种结合了遗传算法(GA)和BP神经网络的优化预测方法。BP神经网络是一种多层前馈神经网络,常用于模式识别和预测问题,但其容易陷入局部最优。而遗传算法是一种模拟自然选择和遗传机制的全局优化方法,能够有效避免局部最优 。GABP算法通过遗传算法优化BP神经网络的权重和阈值,从而提高网络的学习效率和预测精度 。 种群:遗传算法中个体的集合,每个个体代表一种可能的解决方案。 编码:将解决方案转化为适合遗传操作的形式,如二进制编码。 适应度函数:用于评估个体解的质量,通常与目标函数相反,目标函数值越小,适应度越高。 选择:根据适应度保留优秀个体,常见方法有轮盘赌选择、锦标赛选择等。 交叉:两个父代个体交换部分基因生成子代。 变异:随机改变个体的部分基因,增加种群多样性。 终止条件:当迭代次数或适应度阈值达到预设值时停止算法 。 初始化种群:随机生成一组神经网络参数(权重和阈值)作为初始种群 。 计算适应度:使用神经网络模型进行训练和预测,根据预测误差计算适应度 。 选择操作:根据适应度选择优秀个体 。 交叉操作:对选择的个体进行交叉,生成新的子代个体 。 变异操作:对子代进行随机变异 。 替换操作:用新生成的子代替换掉一部分旧种群 。 重复步骤2-6,直到满足终止条件 。 适应度函数通常以预测误差为基础,误差越小,适应度越高。常用的误差指标包括均方根误差(RMSE)或平均绝对误差(MAE)等 。 GABP代码中包含了适应度函数的定义、种群的生成、选择、交叉、变异以及训练过程。代码注释详尽,便于理解每个步骤的作用 。 GABP算法适用于多种领域,如时间序列预测、经济预测、工程问题的优化等。它特别适合解决多峰优化问题,能够有效提高预测的准确性和稳定性 。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

cxxu1375

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值