My First 博客

  大学时候一直想写博客,由于各种原因吧,不再细说。现在,为什么要写呢,我的师兄朱博士说,知识管理。是的,学的东西总会忘,而写博客可以把你的学习历程记录下来,能有一个好的逻辑和框架,回顾起来也快得多,总体来讲很划得来。总之,博客将伴随着我,一起度过我的研究生生涯。写得好不好无所谓啦,我的目的很明确,这只是为我自己历程的一个记录,若不幸给他人看了去,尽管当一个笑话笑一笑吧!
  这个学期一直为上课而作业,完全被课程所驱动。仔细回顾这半年,很是空虚,想学的算法,想学的机器学习,想学的大数据,想学的linux运维等等吧,都是起了个头就无疾而终。不过我真正的认识了一个道理:研究生的学习真的要靠自己,正如我爱的那本书《遥远的救世主》,世界上没有救世主,神即道,道法自然,如来。实事求是,靠自己,比什么都重要。
  下面呢,我要制定一个计划,当然只是我自己的,因为下学期估计会上手项目,计划可能会冲突,先走一步算一步吧!没有计划、没有目标总会让人迷茫,让人不知所措。一、不贪多,做好一两件事就好。二、理论和实践两手抓。
  理论上斯坦福的算法导论视频课程结合《算法导论》这本书,算法永无止境啊,这个不能断。实践上,大方向先定于hadoop大数据这一块,可能会偏离我下一年方向,但是先做了再说。先学一下linux运维,然后搭建hadoop环境,再选择hadoop的一部分进行细学。当然后面还有机器学习,Python,R,统计之类等等等等东西很多,但我不管它们。
  这个小目标也得够我折腾几个月了。恩,先这么着!就当是一个宣言吧!
 

深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值