给定一个正整数 n,将其拆分为至少两个正整数的和,并使这些整数的乘积最大化。 返回你可以获得的最大乘积。
例如,给定 n = 2,返回1(2 = 1 + 1);给定 n = 10,返回36(10 = 3 + 3 + 4)。
注意:你可以假设 n 不小于2且不大于58。
①使用dp[i]表示正整数i的最大乘积,则
dp[i]=max{dp[i-1]*1,dp[i-2]*2,...,dp[i-(i-1)]*(i-1)
;
(i-1) * 1,(i-2) * 2,(i-3)*3,.....(i) * (i-1)}
class Solution {
public int integerBreak(int n) {
int[] dp = new int[n+1];
dp[1] = 1;
for(int i=2;i<=n;i++){
for(int j=1;j<=i-1;j++){
dp[i] = Math.max(dp[i],Math.max(j*dp[i-j],j*(i-j)));
}
}
return dp[n];
}
}
②由①可知,dp[i]的状态就能转化为其他dp[1]…dp[i-1]可得,但事实并没有这么麻烦,因为这些正整数拆分最终总会拆分为2,3和少数的1.比如:
2:1*1=1;
3:1*2=2; 这里不是dp[ 2 ] * 1;
4:2*2=4;
5:2*3=6;
因此调整状态转移方程为:dp[i]=max(dp[i-2]*2,dp[i-3]*3)
;
class Solution {
public int integerBreak(int n) {
if(n == 2)
return 1;
if(n == 3)
return 2;
int[] dp = new int[n+1];
dp[0] = 0;
dp[1] = 1;
dp[2] = 1;
dp[3] = 2;
int p,q;
for(int i=4;i<=n;i++){
p = Math.max(dp[i-2]*2,(i-2)*2);
q = Math.max(dp[i-3]*3,(i-3)*3);
dp[i] = Math.max(p,q);
}
return dp[n];
}
}
参考:https://blog.csdn.net/lml0703/article/details/80058421
class Solution {
public int integerBreak(int n) {
if(n < 4)
return n - 1;
int res = 1;
while(n > 2){
res *= 3;
n = n - 3;
}
if(n == 0)
return res;
if(n == 1)
return (res/3) * 4;//除3余1,把其中的一个3加1变为4再相乘
if(n == 2)
res *= n;
return res;
}
}
参考:https://www.cnblogs.com/zywscq/p/5415303.html
https://blog.csdn.net/will130/article/details/51193736