1、查看显卡驱动支持cuda版本
在cmd中输入nvidia-smi查看当前显卡驱动可支持的cuda版本,红框是支持的cuda最高版本,版本太低建议先自行更新显卡驱动
nvidia-smi
2、下载CUDA Toolkit
官网链接
https://developer.nvidia.com/cuda-toolkit-archive
选择合适的版本下载
下载完点击安装,只需要勾选下面这几个
安装完成后在终端输入nvcc -V
显示如下代表安装成功,注意V为大写
会自动添加这三个环境变量,若未出现以上界面自行添加以下环境变量
至此CUDA安装成功
3、安装cuDNN
安装CUDA Toolkit后cuda就已经安装成功,cuDNN是用于GPU加速深度神经网络的原语库,部分深度学习框架会把CUDA、CUDNN打包在whl包里,pytroch的大部分版本就是这样,所以无需手动安装。但是像paddle这样的框架,默认不包含这些加速库,因为可以节约大小,不至于被pypi拒绝发版。所以自己安装是有必要的
官网链接
https://developer.nvidia.com/cudnn-downloads
直接下载最新的就可以了
下载完解压后复制这三个文件夹
粘贴到CUDA Toolkit安装目录
4、卸载CUDA
当需要卸载cuda,升级cuda时,除了以下3个是显卡驱动程序以外,其余都可以卸载
卸载后并检查环境变量是否自动删除。需要升级再按照1、2、3步骤走一遍即可
5、额外的话
pytorch官方的torch库
https://download.pytorch.org/whl/torch/
如果pytorch官网下载速度慢,将下载链接复制到迅雷浏览器中下载
清华大学开源软件镜像站
https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch/win-64/?C=M&O=A
如果选择带cu的即为cuda版本的torch,包内集成了cuda和cudnn,不需要额外再安装cuda和cudnn