训练过程在上一篇博客里https://blog.csdn.net/xue_csdn/article/details/105128094
首先在代码的相同路径下新建一个文件夹save_model。模型会被保存进来。
我这儿就直接把网络结构和模型的训练和保存写在同一代码里,不再互相调用了。
save_model.py
"""
###训练猫狗分类模型
###保存生成的模型
"""
#import tensorflow as tf
import tensorflow.compat.v1 as tf
tf.disable_v2_behavior()
import numpy as np
import read_tfrecords
epoch = 15
batch_size = 20
def one_hot(labels, Label_class):
one_hot_label = np.array([[int(i==int(labels[j])) for i in range(Label_class)] for j in range(len(labels))])
return one_hot_label
#初始化权值
def weight_variable(shape):
initial = tf.truncated_normal(shape, stddev = 0.02)
return tf.Variable(initial)
#初始化偏置
def bias_variable(shape):
initial = tf.constant(0.0 , shape=shape)
return tf.Variable(initial)
#卷积层
def conv2d(x,W):