tf-CNN(三)Tensorflow将训练模型保存到本地

本文介绍了一个基于TensorFlow的猫狗分类模型的训练过程,包括网络结构设计、数据预处理、模型训练与评估,以及如何将训练完成的模型进行保存。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

训练过程在上一篇博客里https://blog.csdn.net/xue_csdn/article/details/105128094

首先在代码的相同路径下新建一个文件夹save_model。模型会被保存进来。

我这儿就直接把网络结构和模型的训练和保存写在同一代码里,不再互相调用了。

save_model.py

"""
###训练猫狗分类模型
###保存生成的模型

"""

#import tensorflow as tf
import tensorflow.compat.v1 as tf
tf.disable_v2_behavior()
import numpy as np
import read_tfrecords

epoch = 15
batch_size = 20

def one_hot(labels, Label_class):
    one_hot_label = np.array([[int(i==int(labels[j])) for i in range(Label_class)] for j in range(len(labels))])
    return one_hot_label

#初始化权值
def weight_variable(shape):
    initial = tf.truncated_normal(shape, stddev = 0.02)
    return tf.Variable(initial)

#初始化偏置
def bias_variable(shape):
    initial = tf.constant(0.0 , shape=shape)
    return tf.Variable(initial)

#卷积层
def conv2d(x,W):
   
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值