行人2检测系统源码分享

行人2检测检测系统源码分享

[一条龙教学YOLOV8标注好的数据集一键训练_70+全套改进创新点发刊_Web前端展示]

1.研究背景与意义

项目参考AAAI Association for the Advancement of Artificial Intelligence

项目来源AACV Association for the Advancement of Computer Vision

研究背景与意义

随着城市化进程的加快和智能监控技术的迅猛发展,行人检测在智能交通、公共安全和人机交互等领域的重要性日益凸显。行人检测技术不仅能够有效提升交通管理的智能化水平,还能在公共安全监控中发挥关键作用,及时识别潜在的安全隐患。因此,开发高效、准确的行人检测系统成为了计算机视觉领域的一个重要研究方向。

近年来,深度学习技术的快速发展为目标检测任务带来了革命性的变化。其中,YOLO(You Only Look Once)系列模型因其高效的实时检测能力和较高的准确率而受到广泛关注。YOLOv8作为该系列的最新版本,结合了更先进的网络结构和优化算法,能够在复杂环境中实现快速而准确的目标检测。然而,尽管YOLOv8在多个数据集上表现出色,但在特定场景下,如拥挤的城市街道或多变的光照条件下,其检测性能仍有待提升。因此,基于改进YOLOv8的行人检测系统的研究显得尤为重要。

本研究将利用一个包含3100张图像的行人检测数据集,针对该数据集的特性进行YOLOv8模型的改进。该数据集专注于行人这一单一类别,提供了丰富的样本,能够有效支持模型的训练和验证。通过对数据集的深入分析,我们可以发现行人在不同场景下的外观变化、姿态多样性以及遮挡情况等因素,这些都对行人检测的准确性提出了挑战。因此,针对这些特征进行模型的优化,将是提升行人检测系统性能的关键。

本研究的意义不仅在于技术层面的创新,更在于其广泛的应用前景。随着智能城市建设的推进,行人检测技术将为交通管理、公共安全监控、智能导航等领域提供重要支持。通过提升行人检测的准确性和实时性,我们可以有效减少交通事故、提升公共安全,并为智能交通系统的构建奠定基础。此外,改进YOLOv8的行人检测系统还将为相关研究提供新的思路和方法,推动计算机视觉领域的进一步发展。

综上所述,基于改进YOLOv8的行人检测系统的研究不仅具有重要的理论价值,也具备广泛的实际应用意义。通过深入探讨和解决行人检测中的关键问题,我们期望能够为未来的智能监控和交通管理系统提供更为高效、可靠的技术支持,从而推动社会的安全与和谐发展。

2.图片演示

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

注意:由于此博客编辑较早,上面“2.图片演示”和“3.视频演示”展示的系统图片或者视频可能为老版本,新版本在老版本的基础上升级如下:(实际效果以升级的新版本为准)

(1)适配了YOLOV8的“目标检测”模型和“实例分割”模型,通过加载相应的权重(.pt)文件即可自适应加载模型。

(2)支持“图片识别”、“视频识别”、“摄像头实时识别”三种识别模式。

(3)支持“图片识别”、“视频识别”、“摄像头实时识别”三种识别结果保存导出,解决手动导出(容易卡顿出现爆内存)存在的问题,识别完自动保存结果并导出到tempDir中。

(4)支持Web前端系统中的标题、背景图等自定义修改,后面提供修改教程。

另外本项目提供训练的数据集和训练教程,暂不提供权重文件(best.pt),需要您按照教程进行训练后实现图片演示和Web前端界面演示的效果。

3.视频演示

3.1 视频演示

4.数据集信息展示

4.1 本项目数据集详细数据(类别数&类别名)

nc: 1
names: [‘people’]

4.2 本项目数据集信息介绍

数据集信息展示

在本研究中,我们采用了名为“detect_people”的数据集,以改进YOLOv8的行人检测系统。该数据集专注于行人检测任务,提供了丰富的标注数据,旨在提升计算机视觉模型在复杂环境中对行人的识别能力。数据集的类别数量为1,唯一的类别为“people”,这表明数据集的设计是高度专注的,旨在通过专一的目标检测来优化模型的性能。

“detect_people”数据集包含了多样化的行人图像,涵盖了不同的场景、姿态、光照条件以及背景复杂度。这种多样性使得模型在训练过程中能够学习到更为丰富的特征,从而在实际应用中具备更强的泛化能力。数据集中行人的姿态变化、遮挡情况以及与其他物体的交互都被充分考虑,确保了模型在真实世界中的应用效果。

在数据集的构建过程中,图像的选择和标注都经过严格的审核,以确保数据的质量和准确性。每一张图像都经过专业标注人员的精心标注,确保行人的边界框准确无误。这种高质量的标注不仅提升了模型的训练效果,也为后续的模型评估提供了可靠的基准。数据集中的图像涵盖了不同的城市环境、公共场所以及各种天气条件,极大地增强了模型的鲁棒性。

为了更好地利用“detect_people”数据集进行YOLOv8的训练,我们在数据预处理阶段进行了多项操作,包括图像缩放、裁剪、翻转以及颜色增强等。这些操作不仅增加了数据集的多样性,还有效地提高了模型的训练效率。通过这些预处理步骤,模型能够在不同的输入条件下保持较高的检测精度。

在模型训练过程中,我们将“detect_people”数据集划分为训练集和验证集,以便于对模型的性能进行评估。训练集用于模型的学习,而验证集则用于监测模型在未见数据上的表现。这种划分策略确保了模型在训练过程中不会过拟合,从而提高了其在实际应用中的可靠性。

此外,我们还对数据集进行了数据增强,以进一步提升模型的性能。通过引入随机旋转、缩放、亮度调整等技术,我们能够生成更多的训练样本,使得模型在面对不同场景时具备更强的适应能力。这种增强策略不仅丰富了数据集的多样性,也为模型提供了更为全面的训练基础。

总之,“detect_people”数据集为改进YOLOv8的行人检测系统提供了坚实的基础。通过高质量的标注、多样化的图像内容以及有效的数据处理策略,我们期望能够显著提升模型在行人检测任务中的表现,使其在实际应用中能够更好地应对各种复杂场景。这一数据集的应用不仅推动了行人检测技术的发展,也为相关领域的研究提供了宝贵的资源。

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

5.全套项目环境部署视频教程(零基础手把手教学)

5.1 环境部署教程链接(零基础手把手教学)

5.2 安装Python虚拟环境创建和依赖库安装视频教程链接(零基础手把手教学)

6.手把手YOLOV8训练视频教程(零基础小白有手就能学会)

6.1 手把手YOLOV8训练视频教程(零基础小白有手就能学会)

7.70+种全套YOLOV8创新点代码加载调参视频教程(一键加载写好的改进模型的配置文件)

7.1 70+种全套YOLOV8创新点代码加载调参视频教程(一键加载写好的改进模型的配置文件)

8.70+种全套YOLOV8创新点原理讲解(非科班也可以轻松写刊发刊,V10版本正在科研待更新)

由于篇幅限制,每个创新点的具体原理讲解就不一一展开,具体见下列网址中的创新点对应子项目的技术原理博客网址【Blog】:

9.png

8.1 70+种全套YOLOV8创新点原理讲解链接

9.系统功能展示(检测对象为举例,实际内容以本项目数据集为准)

图9.1.系统支持检测结果表格显示

图9.2.系统支持置信度和IOU阈值手动调节

图9.3.系统支持自定义加载权重文件best.pt(需要你通过步骤5中训练获得)

图9.4.系统支持摄像头实时识别

图9.5.系统支持图片识别

图9.6.系统支持视频识别

图9.7.系统支持识别结果文件自动保存

图9.8.系统支持Excel导出检测结果数据

10.png

11.png

12.png

13.png

14.png

15.png

16.png

17.png

10.原始YOLOV8算法原理

原始YOLOv8算法原理

YOLOv8算法作为YOLO系列的最新成员,延续了其前辈的设计理念,同时在多个方面进行了创新和改进。该算法的整体架构依然遵循输入层、主干网络、特征融合层和解耦头的设计框架,然而其在每个组件的实现上都融入了新的思路和技术,使得YOLOv8在目标检测的性能上达到了新的高度。

在主干网络方面,YOLOv8继续采用YOLOv5的CSPDarknet架构,但对其进行了重要的改进。具体而言,YOLOv8将YOLOv5中的C3模块替换为C2f模块。C2f模块的设计灵感来源于YOLOv7的ELAN结构,它通过引入更多的残差连接,显著增强了模型的梯度流动性。这种设计不仅提升了特征提取的效率,还在保持模型轻量化的同时,确保了检测精度的提升。C2f模块的结构包含多个CBS(卷积+归一化+SiLU激活函数)块,以及一系列的Bottleneck层,通过这样的设计,C2f模块能够有效地捕捉到更丰富的特征信息,并在不同层次之间实现更好的特征重用。

YOLOv8的特征融合层采用了PAN-FPN结构,旨在充分整合不同尺度的特征信息。在这一结构中,YOLOv8去除了YOLOv5中上采样阶段的1x1卷积操作,使得高层特征能够直接与中层特征进行融合。这种自下而上的特征融合方式,不仅提高了特征的表达能力,还增强了模型对细节信息的捕捉能力。通过这样的设计,YOLOv8能够更好地处理复杂场景中的目标检测任务,尤其是在面对多尺度物体时,表现得尤为出色。

值得注意的是,YOLOv8在目标检测的方式上进行了重大转变,抛弃了传统的Anchor-Based方法,转而采用Anchor-Free的思想。这一变化使得模型在处理目标时更加灵活,能够更好地适应不同尺寸和形状的物体。通过引入Task-Aligned的样本匹配策略,YOLOv8能够在训练过程中更有效地进行样本分配,从而提升了模型的训练效率和检测精度。

在损失函数的设计上,YOLOv8也做出了创新。它采用了VFLLoss作为分类损失,并结合DFLLoss和CIoULoss作为回归损失。这种组合不仅提高了模型对难以分类样本的处理能力,还有效地解决了样本不平衡的问题。通过这样的损失函数设计,YOLOv8能够在训练过程中更好地聚焦于难以识别的目标,从而提升整体的检测性能。

在数据预处理方面,YOLOv8沿用了YOLOv5的策略,采用了多种数据增强手段,如马赛克增强、混合增强、空间扰动和颜色扰动等。这些增强技术的应用,使得模型在训练过程中能够接触到更为多样化的样本,从而提高了模型的泛化能力和鲁棒性。

YOLOv8的解耦头结构是其另一大亮点。该结构将分类和回归任务分离,使得模型在进行目标检测时能够更为高效地处理不同的任务。解耦头通过多个并行的卷积分支,分别计算目标的类别和边框回归损失,这种设计使得模型在进行目标检测时,能够更好地平衡分类和回归的性能。

综上所述,YOLOv8算法在多个方面进行了创新和改进,从主干网络的C2f模块到特征融合的PAN-FPN结构,再到Anchor-Free的检测方式和解耦头的设计,所有这些都使得YOLOv8在目标检测领域展现出了强大的能力。通过不断优化和调整,YOLOv8不仅提升了检测精度,也增强了模型的适应性和灵活性,为实际应用提供了更为可靠的解决方案。随着YOLOv8的推出,目标检测技术又向前迈进了一大步,未来在更多复杂场景中的应用将更加广泛和深入。

18.png

11.项目核心源码讲解(再也不用担心看不懂代码逻辑)

11.1 ui.py

以下是经过精简和注释的核心代码部分:

import sys
import subprocess
from QtFusion.path import abs_path

def run_script(script_path):
    """
    使用当前 Python 环境运行指定的脚本。

    Args:
        script_path (str): 要运行的脚本路径
    """
    # 获取当前 Python 解释器的路径
    python_path = sys.executable

    # 构建运行命令,使用 streamlit 运行指定的脚本
    command = f'"{python_path}" -m streamlit run "{script_path}"'

    # 执行命令,并等待其完成
    result = subprocess.run(command, shell=True)
    
    # 检查命令执行结果,如果返回码不为0,则表示出错
    if result.returncode != 0:
        print("脚本运行出错。")

# 主程序入口
if __name__ == "__main__":
    # 获取要运行的脚本的绝对路径
    script_path = abs_path("web.py")

    # 调用函数运行指定的脚本
    run_script(script_path)

代码分析与注释:

  1. 导入模块

    • sys:用于访问与 Python 解释器相关的变量和函数。
    • subprocess:用于执行外部命令。
    • abs_path:从 QtFusion.path 模块导入的函数,用于获取文件的绝对路径。
  2. run_script 函数

    • 功能:接受一个脚本路径作为参数,并在当前 Python 环境中运行该脚本。
    • 参数:
      • script_path:要运行的脚本的路径。
    • 实现步骤:
      • 获取当前 Python 解释器的路径。
      • 构建运行命令,使用 streamlit 模块来运行指定的脚本。
      • 使用 subprocess.run 执行命令,并等待其完成。
      • 检查命令的返回码,如果不为0,表示脚本运行出错,打印错误信息。
  3. 主程序入口

    • 使用 if __name__ == "__main__": 确保只有在直接运行该脚本时才会执行以下代码。
    • 获取要运行的脚本的绝对路径(web.py)。
    • 调用 run_script 函数来运行该脚本。

这个代码的核心功能是通过 streamlit 在当前 Python 环境中运行指定的脚本,并处理可能的错误。

这个文件名为 ui.py,其主要功能是运行一个指定的 Python 脚本,具体是通过 Streamlit 框架来启动一个 Web 应用。文件中首先导入了必要的模块,包括 sysossubprocess,以及一个自定义的 abs_path 函数,用于获取脚本的绝对路径。

run_script 函数中,首先获取当前 Python 解释器的路径,这样可以确保在正确的环境中运行脚本。接着,构建一个命令字符串,该命令使用当前的 Python 解释器来运行指定的脚本,具体是通过 streamlit run 命令来启动。然后,使用 subprocess.run 方法执行这个命令,并通过 shell=True 参数允许在 shell 中执行命令。

在执行命令后,函数会检查返回的状态码。如果状态码不为零,表示脚本运行过程中出现了错误,此时会打印出“脚本运行出错”的提示信息。

在文件的最后部分,使用 if __name__ == "__main__": 语句来确保只有在直接运行该脚本时才会执行后面的代码。这里指定了要运行的脚本路径为 web.py,并调用 run_script 函数来启动这个脚本。

总体来说,这个文件的功能是提供一个简单的接口来运行一个 Streamlit 应用,确保在正确的 Python 环境中执行,并处理可能出现的错误。

11.2 70+种YOLOv8算法改进源码大全和调试加载训练教程(非必要)\ultralytics\nn\backbone\CSwomTramsformer.py

以下是代码中最核心的部分,并附上详细的中文注释:

import torch
import torch.nn as nn
import numpy as np

class Mlp(nn.Module):
    """多层感知机(MLP)模块"""
    def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
        super().__init__()
        out_features = out_features or in_features  # 输出特征数默认为输入特征数
        hidden_features = hidden_features or in_features  # 隐藏层特征数默认为输入特征数
        self.fc1 = nn.Linear(in_features, hidden_features)  # 第一层全连接
        self.act = act_layer()  # 激活函数
        self.fc2 = nn.Linear(hidden_features, out_features)  # 第二层全连接
        self.drop = nn.Dropout(drop)  # Dropout层

    def forward(self, x):
        """前向传播"""
        x = self.fc1(x)  # 通过第一层
        x = self.act(x)  # 激活
        x = self.drop(x)  # Dropout
        x = self.fc2(x)  # 通过第二层
        x = self.drop(x)  # Dropout
        return x

class LePEAttention(nn.Module):
    """带有位置编码的注意力机制"""
    def __init__(self, dim, resolution, idx, split_size=7, num_heads=8, attn_drop=0.):
        super().__init__()
        self.dim = dim  # 输入特征维度
        self.resolution = resolution  # 输入分辨率
        self.split_size = split_size  # 分割大小
        self.num_heads = num_heads  # 注意力头数
        head_dim = dim // num_heads  # 每个头的维度
        self.scale = head_dim ** -0.5  # 缩放因子
        self.get_v = nn.Conv2d(dim, dim, kernel_size=3, stride=1, padding=1, groups=dim)  # 卷积层用于获取位置编码
        self.attn_drop = nn.Dropout(attn_drop)  # 注意力Dropout

    def im2cswin(self, x):
        """将输入转换为窗口格式"""
        B, N, C = x.shape  # B: 批量大小, N: 序列长度, C: 特征维度
        H = W = int(np.sqrt(N))  # 计算高度和宽度
        x = x.transpose(-2, -1).contiguous().view(B, C, H, W)  # 转换为图像格式
        x = img2windows(x, self.split_size, self.split_size)  # 切分为窗口
        return x

    def forward(self, qkv):
        """前向传播"""
        q, k, v = qkv  # 获取查询、键、值
        q = self.im2cswin(q)  # 将查询转换为窗口格式
        k = self.im2cswin(k)  # 将键转换为窗口格式
        v = self.get_v(v)  # 获取位置编码
        attn = (q @ k.transpose(-2, -1)) * self.scale  # 计算注意力
        attn = nn.functional.softmax(attn, dim=-1)  # 归一化
        attn = self.attn_drop(attn)  # 应用Dropout
        x = attn @ v  # 计算加权值
        return x

class CSWinBlock(nn.Module):
    """CSWin Transformer的基本块"""
    def __init__(self, dim, num_heads, split_size=7, mlp_ratio=4.):
        super().__init__()
        self.qkv = nn.Linear(dim, dim * 3)  # 线性层用于生成查询、键、值
        self.attn = LePEAttention(dim, resolution=split_size, idx=0, num_heads=num_heads)  # 注意力层
        self.mlp = Mlp(in_features=dim, hidden_features=int(dim * mlp_ratio), out_features=dim)  # MLP层

    def forward(self, x):
        """前向传播"""
        qkv = self.qkv(x).reshape(x.shape[0], -1, 3, x.shape[2]).permute(2, 0, 1, 3)  # 生成qkv
        x = self.attn(qkv)  # 通过注意力层
        x = x + self.mlp(x)  # 通过MLP层
        return x

class CSWinTransformer(nn.Module):
    """CSWin Transformer模型"""
    def __init__(self, img_size=640, num_classes=1000, embed_dim=96, depth=[2, 2, 6, 2]):
        super().__init__()
        self.num_classes = num_classes
        self.embed_dim = embed_dim
        self.stage1 = nn.ModuleList([CSWinBlock(embed_dim, num_heads=12) for _ in range(depth[0])])  # 第一阶段
        self.stage2 = nn.ModuleList([CSWinBlock(embed_dim * 2, num_heads=24) for _ in range(depth[1])])  # 第二阶段
        self.stage3 = nn.ModuleList([CSWinBlock(embed_dim * 4, num_heads=48) for _ in range(depth[2])])  # 第三阶段
        self.stage4 = nn.ModuleList([CSWinBlock(embed_dim * 8, num_heads=96) for _ in range(depth[3])])  # 第四阶段

    def forward(self, x):
        """前向传播"""
        for stage in [self.stage1, self.stage2, self.stage3, self.stage4]:
            for blk in stage:
                x = blk(x)  # 通过每个块
        return x

# 示例代码
if __name__ == '__main__':
    inputs = torch.randn((1, 3, 640, 640))  # 输入示例
    model = CSWinTransformer()  # 创建模型
    res = model(inputs)  # 前向传播
    print(res.size())  # 输出结果的尺寸

代码核心部分解释:

  1. Mlp类:实现了一个简单的多层感知机,包括两层全连接层和激活函数。
  2. LePEAttention类:实现了带有位置编码的注意力机制,负责将输入的查询、键、值转换为窗口格式并计算注意力。
  3. CSWinBlock类:构建了CSWin Transformer的基本块,包含注意力层和MLP层。
  4. CSWinTransformer类:定义了整个CSWin Transformer模型,包含多个阶段,每个阶段由多个CSWinBlock组成。
  5. 前向传播:每个类的forward方法定义了数据流动的过程,最终输出特征。

该文件实现了CSWin Transformer模型的结构,主要用于计算机视觉任务。文件中包含多个类和函数,具体功能如下:

首先,文件引入了必要的库,包括PyTorch和一些用于模型构建的工具。然后定义了几个模型组件,包括多层感知机(Mlp)、局部增强注意力(LePEAttention)、CSWin块(CSWinBlock)和合并块(Merge_Block)。这些组件是构建CSWin Transformer的基础。

Mlp类实现了一个简单的前馈神经网络,包含两个线性层和一个激活函数,支持Dropout以防止过拟合。LePEAttention类实现了增强的注意力机制,通过将输入图像转换为窗口并计算注意力,来捕捉局部特征。该类的forward方法接收查询、键和值,并计算注意力分数。

CSWinBlock类是CSWin Transformer的基本构建块,包含了多个注意力层和前馈网络。它根据输入的分辨率和头数配置不同的注意力层,并通过残差连接和层归一化来增强模型的表现。

Merge_Block类用于在不同阶段之间合并特征图,通过卷积操作减少特征图的分辨率并增加通道数。

CSWinTransformer类是整个模型的主体,支持输入图像的分块处理。它定义了多个阶段,每个阶段由多个CSWinBlock组成,并通过Merge_Block进行特征合并。模型的初始化包括定义各个阶段的层数、头数和其他超参数。

文件中还定义了一些辅助函数,例如img2windows和windows2img,用于在图像和窗口之间进行转换,以及用于加载预训练权重的函数。

最后,文件提供了四个不同规模的模型构造函数(CSWin_tiny、CSWin_small、CSWin_base、CSWin_large),每个函数根据不同的参数初始化模型,并可选择加载预训练权重。

在文件的最后部分,提供了一个测试代码块,创建了输入张量并实例化了不同规模的模型,打印出每个模型的输出尺寸,以验证模型的正确性和功能。

总体而言,该文件实现了CSWin Transformer的完整结构,提供了多种模型规模的构建方式,并支持预训练权重的加载,适用于图像分类等视觉任务。

11.3 code\ultralytics\utils\callbacks\base.py

以下是代码中最核心的部分,并附上详细的中文注释:

from collections import defaultdict
from copy import deepcopy

# 默认回调函数字典,包含了训练、验证、预测和导出过程中的回调函数
default_callbacks = {
    # 训练过程中的回调
    "on_pretrain_routine_start": [on_pretrain_routine_start],
    "on_train_start": [on_train_start],
    "on_train_epoch_start": [on_train_epoch_start],
    "on_train_batch_start": [on_train_batch_start],
    "optimizer_step": [optimizer_step],
    "on_before_zero_grad": [on_before_zero_grad],
    "on_train_batch_end": [on_train_batch_end],
    "on_train_epoch_end": [on_train_epoch_end],
    "on_fit_epoch_end": [on_fit_epoch_end],  # fit = 训练 + 验证
    "on_model_save": [on_model_save],
    "on_train_end": [on_train_end],
    "on_params_update": [on_params_update],
    "teardown": [teardown],
    # 验证过程中的回调
    "on_val_start": [on_val_start],
    "on_val_batch_start": [on_val_batch_start],
    "on_val_batch_end": [on_val_batch_end],
    "on_val_end": [on_val_end],
    # 预测过程中的回调
    "on_predict_start": [on_predict_start],
    "on_predict_batch_start": [on_predict_batch_start],
    "on_predict_batch_end": [on_predict_batch_end],
    "on_predict_postprocess_end": [on_predict_postprocess_end],
    "on_predict_end": [on_predict_end],
    # 导出过程中的回调
    "on_export_start": [on_export_start],
    "on_export_end": [on_export_end],
}

def get_default_callbacks():
    """
    返回一个默认回调字典的副本,字典的值为默认空列表。

    返回:
        (defaultdict): 一个 defaultdict,包含来自 default_callbacks 的键和空列表作为默认值。
    """
    return defaultdict(list, deepcopy(default_callbacks))

def add_integration_callbacks(instance):
    """
    从各种来源向实例的回调中添加集成回调。

    参数:
        instance (Trainer, Predictor, Validator, Exporter): 一个具有 'callbacks' 属性的对象,该属性是一个回调列表的字典。
    """
    # 加载 HUB 回调
    from .hub import callbacks as hub_cb

    callbacks_list = [hub_cb]

    # 如果实例是 Trainer 类型,则加载训练相关的回调
    if "Trainer" in instance.__class__.__name__:
        from .clearml import callbacks as clear_cb
        from .comet import callbacks as comet_cb
        from .dvc import callbacks as dvc_cb
        from .mlflow import callbacks as mlflow_cb
        from .neptune import callbacks as neptune_cb
        from .raytune import callbacks as tune_cb
        from .tensorboard import callbacks as tb_cb
        from .wb import callbacks as wb_cb

        # 将所有训练相关的回调添加到回调列表中
        callbacks_list.extend([clear_cb, comet_cb, dvc_cb, mlflow_cb, neptune_cb, tune_cb, tb_cb, wb_cb])

    # 将回调添加到实例的回调字典中
    for callbacks in callbacks_list:
        for k, v in callbacks.items():
            if v not in instance.callbacks[k]:
                instance.callbacks[k].append(v)

代码说明:

  1. default_callbacks: 这是一个字典,定义了在不同训练、验证、预测和导出阶段所需的回调函数。每个阶段都有特定的回调函数,可以在相应的事件发生时被调用。

  2. get_default_callbacks: 这个函数返回一个 defaultdict,其键来自 default_callbacks,值为默认的空列表。这使得在使用回调时,可以方便地添加新的回调而不会出现键错误。

  3. add_integration_callbacks: 这个函数用于将不同来源的回调添加到给定实例的回调字典中。它首先加载 HUB 回调,然后根据实例的类型(如 Trainer)加载相应的训练回调,最后将这些回调添加到实例的回调字典中,确保不会重复添加相同的回调。

这个程序文件是Ultralytics YOLO项目中的一个基础回调模块,主要用于在训练、验证、预测和导出过程中定义和管理回调函数。文件中包含了一系列的回调函数,这些函数在特定的训练或验证阶段被调用,以便用户可以在这些阶段插入自定义逻辑或操作。

文件首先导入了defaultdictdeepcopy模块。defaultdict用于创建一个字典,默认值为列表,这样可以方便地存储和管理回调函数。deepcopy则用于在复制字典时保留原始数据的结构。

接下来,文件定义了一系列的回调函数,分为几个部分:

  1. 训练回调:包括在预训练开始和结束、训练开始、每个训练周期和批次开始和结束、优化器步骤、梯度清零前、模型保存、训练结束等时刻被调用的函数。这些函数目前都是空的,意味着它们可以被用户自定义实现,以在这些特定时刻执行特定操作。

  2. 验证回调:类似于训练回调,定义了在验证开始、每个验证批次开始和结束、验证结束时调用的函数。

  3. 预测回调:定义了在预测开始、每个预测批次开始和结束、预测后处理结束、预测结束时调用的函数。

  4. 导出回调:定义了在模型导出开始和结束时调用的函数。

在所有回调函数的定义之后,创建了一个default_callbacks字典,将各个回调函数按类别组织起来,便于后续使用。

get_default_callbacks函数返回一个深拷贝的default_callbacks字典,确保返回的字典是一个新的对象,避免对原始字典的修改。

add_integration_callbacks函数用于将来自不同来源的集成回调添加到实例的回调字典中。它首先导入了HUB回调,然后根据实例的类型(如Trainer、Predictor等)加载不同的回调模块,并将这些回调添加到实例的回调字典中,确保每个回调函数只被添加一次。

总的来说,这个文件为YOLO模型的训练、验证、预测和导出过程提供了一个灵活的回调机制,允许用户在关键时刻插入自定义逻辑,以满足特定需求。

11.4 train.py

以下是经过简化和注释的核心代码部分,主要集中在YOLO模型的训练过程:

import random
import numpy as np
import torch.nn as nn
from ultralytics.data import build_dataloader, build_yolo_dataset
from ultralytics.engine.trainer import BaseTrainer
from ultralytics.models import yolo
from ultralytics.nn.tasks import DetectionModel
from ultralytics.utils import LOGGER, RANK
from ultralytics.utils.torch_utils import de_parallel, torch_distributed_zero_first

class DetectionTrainer(BaseTrainer):
    """
    DetectionTrainer类用于基于YOLO模型进行目标检测的训练。
    """

    def build_dataset(self, img_path, mode="train", batch=None):
        """
        构建YOLO数据集。

        参数:
            img_path (str): 包含图像的文件夹路径。
            mode (str): 模式,`train`表示训练模式,`val`表示验证模式。
            batch (int, optional): 批次大小,仅用于`rect`模式。
        """
        gs = max(int(de_parallel(self.model).stride.max() if self.model else 0), 32)  # 获取模型的最大步幅
        return build_yolo_dataset(self.args, img_path, batch, self.data, mode=mode, rect=mode == "val", stride=gs)

    def get_dataloader(self, dataset_path, batch_size=16, rank=0, mode="train"):
        """构建并返回数据加载器。"""
        assert mode in ["train", "val"]  # 确保模式有效
        with torch_distributed_zero_first(rank):  # 在分布式训练中,确保数据集只初始化一次
            dataset = self.build_dataset(dataset_path, mode, batch_size)
        shuffle = mode == "train"  # 训练模式下打乱数据
        workers = self.args.workers if mode == "train" else self.args.workers * 2  # 设置工作线程数
        return build_dataloader(dataset, batch_size, workers, shuffle, rank)  # 返回数据加载器

    def preprocess_batch(self, batch):
        """对图像批次进行预处理,包括缩放和转换为浮点数。"""
        batch["img"] = batch["img"].to(self.device, non_blocking=True).float() / 255  # 转换为浮点数并归一化
        if self.args.multi_scale:  # 如果启用多尺度训练
            imgs = batch["img"]
            sz = (
                random.randrange(self.args.imgsz * 0.5, self.args.imgsz * 1.5 + self.stride)
                // self.stride
                * self.stride
            )  # 随机选择图像大小
            sf = sz / max(imgs.shape[2:])  # 计算缩放因子
            if sf != 1:
                ns = [
                    math.ceil(x * sf / self.stride) * self.stride for x in imgs.shape[2:]
                ]  # 计算新的图像形状
                imgs = nn.functional.interpolate(imgs, size=ns, mode="bilinear", align_corners=False)  # 进行插值缩放
            batch["img"] = imgs
        return batch

    def get_model(self, cfg=None, weights=None, verbose=True):
        """返回YOLO目标检测模型。"""
        model = DetectionModel(cfg, nc=self.data["nc"], verbose=verbose and RANK == -1)  # 创建检测模型
        if weights:
            model.load(weights)  # 加载预训练权重
        return model

    def plot_training_samples(self, batch, ni):
        """绘制训练样本及其标注。"""
        plot_images(
            images=batch["img"],
            batch_idx=batch["batch_idx"],
            cls=batch["cls"].squeeze(-1),
            bboxes=batch["bboxes"],
            paths=batch["im_file"],
            fname=self.save_dir / f"train_batch{ni}.jpg",
            on_plot=self.on_plot,
        )

    def plot_metrics(self):
        """从CSV文件中绘制指标。"""
        plot_results(file=self.csv, on_plot=self.on_plot)  # 保存结果图

代码注释说明:

  1. DetectionTrainer类:该类用于训练YOLO目标检测模型,继承自BaseTrainer
  2. build_dataset方法:构建YOLO数据集,接收图像路径、模式和批次大小作为参数。
  3. get_dataloader方法:创建数据加载器,确保在分布式训练中只初始化一次数据集。
  4. preprocess_batch方法:对输入的图像批次进行预处理,包括归一化和多尺度调整。
  5. get_model方法:返回一个YOLO检测模型,并可选择加载预训练权重。
  6. plot_training_samples方法:绘制训练样本及其标注,便于可视化训练过程。
  7. plot_metrics方法:从CSV文件中绘制训练指标,便于分析模型性能。

这个程序文件 train.py 是一个用于训练 YOLO(You Only Look Once)目标检测模型的实现,继承自 BaseTrainer 类。它包含了多个方法,用于构建数据集、获取数据加载器、预处理图像批次、设置模型属性、获取模型、验证模型、记录损失、输出训练进度、绘制训练样本和绘制训练指标等。

在文件的开头,导入了一些必要的库和模块,包括数学运算、随机数生成、深度学习相关的库以及 YOLO 相关的模块。接着定义了 DetectionTrainer 类,这个类专门用于基于检测模型的训练。

build_dataset 方法用于构建 YOLO 数据集。它接收图像路径、模式(训练或验证)和批次大小作为参数,并返回构建好的数据集。这个方法会根据模型的步幅计算出合适的尺寸。

get_dataloader 方法则是构建并返回数据加载器。它根据传入的模式(训练或验证)来决定是否打乱数据,并根据需要初始化数据集。它还会处理一些分布式训练的细节。

preprocess_batch 方法负责对图像批次进行预处理,包括将图像缩放到合适的大小并转换为浮点数格式。这个方法还支持多尺度训练,通过随机选择图像的大小来增强模型的鲁棒性。

set_model_attributes 方法用于设置模型的属性,包括类别数量和类别名称等。这个方法确保模型能够正确识别训练数据中的类别。

get_model 方法返回一个 YOLO 检测模型,并可以加载预训练的权重。

get_validator 方法返回一个用于验证 YOLO 模型的验证器,记录损失值的名称。

label_loss_items 方法用于返回带有标签的训练损失项字典,方便后续的损失记录和分析。

progress_string 方法生成一个格式化的字符串,用于输出训练进度,包括当前的轮次、GPU 内存使用情况、损失值、实例数量和图像大小等信息。

plot_training_samples 方法用于绘制训练样本及其标注,便于可视化训练过程中的数据。

最后,plot_metricsplot_training_labels 方法分别用于绘制训练过程中的指标和创建带标签的训练图,帮助用户更好地理解模型的训练效果。

整体来看,这个文件提供了一个完整的训练框架,涵盖了从数据准备到模型训练和评估的各个方面,为使用 YOLO 进行目标检测提供了便利。

11.5 code\ultralytics\utils\autobatch.py

以下是经过简化和注释的核心代码部分,主要功能是自动估算YOLO模型的最佳批量大小,以便在PyTorch中使用可用的CUDA内存。

import numpy as np
import torch
from ultralytics.utils import LOGGER, colorstr
from ultralytics.utils.torch_utils import profile

def autobatch(model, imgsz=640, fraction=0.60, batch_size=16):
    """
    自动估算YOLO模型的最佳批量大小,以使用可用CUDA内存的一部分。

    参数:
        model (torch.nn.Module): 要计算批量大小的YOLO模型。
        imgsz (int): 输入YOLO模型的图像大小,默认为640。
        fraction (float): 要使用的可用CUDA内存的比例,默认为0.60。
        batch_size (int): 如果检测到错误时使用的默认批量大小,默认为16。

    返回:
        (int): 最佳批量大小。
    """

    # 检查设备
    prefix = colorstr("AutoBatch: ")
    LOGGER.info(f"{prefix}计算图像大小为 {imgsz} 的最佳批量大小")
    device = next(model.parameters()).device  # 获取模型所在设备

    # 如果设备是CPU,返回默认批量大小
    if device.type == "cpu":
        LOGGER.info(f"{prefix}未检测到CUDA,使用默认CPU批量大小 {batch_size}")
        return batch_size

    # 检查CUDA内存
    gb = 1 << 30  # 将字节转换为GiB (1024 ** 3)
    properties = torch.cuda.get_device_properties(device)  # 获取设备属性
    total_memory = properties.total_memory / gb  # 总内存 (GiB)
    reserved_memory = torch.cuda.memory_reserved(device) / gb  # 保留内存 (GiB)
    allocated_memory = torch.cuda.memory_allocated(device) / gb  # 已分配内存 (GiB)
    free_memory = total_memory - (reserved_memory + allocated_memory)  # 可用内存 (GiB)
    
    LOGGER.info(f"{prefix}{device} ({properties.name}) {total_memory:.2f}G 总内存, {reserved_memory:.2f}G 保留内存, {allocated_memory:.2f}G 已分配内存, {free_memory:.2f}G 可用内存")

    # 评估不同批量大小的内存使用情况
    batch_sizes = [1, 2, 4, 8, 16]  # 测试的批量大小
    try:
        img = [torch.empty(b, 3, imgsz, imgsz) for b in batch_sizes]  # 创建空张量以模拟输入
        results = profile(img, model, n=3, device=device)  # 评估每个批量大小的内存使用情况

        # 拟合线性模型以估算最佳批量大小
        memory_usage = [x[2] for x in results if x]  # 提取内存使用情况
        p = np.polyfit(batch_sizes[: len(memory_usage)], memory_usage, deg=1)  # 一次多项式拟合
        optimal_batch_size = int((free_memory * fraction - p[1]) / p[0])  # 计算最佳批量大小

        # 检查是否有批量大小失败
        if None in results:
            fail_index = results.index(None)  # 获取第一个失败的索引
            if optimal_batch_size >= batch_sizes[fail_index]:  # 如果最佳批量大小超过失败点
                optimal_batch_size = batch_sizes[max(fail_index - 1, 0)]  # 选择安全的前一个点

        # 检查最佳批量大小是否在安全范围内
        if optimal_batch_size < 1 or optimal_batch_size > 1024:
            optimal_batch_size = batch_size
            LOGGER.info(f"{prefix}警告 ⚠️ 检测到CUDA异常,使用默认批量大小 {batch_size}.")

        # 记录实际使用的内存比例
        fraction_used = (np.polyval(p, optimal_batch_size) + reserved_memory + allocated_memory) / total_memory
        LOGGER.info(f"{prefix}使用批量大小 {optimal_batch_size},内存使用 {total_memory * fraction_used:.2f}G/{total_memory:.2f}G ({fraction_used * 100:.0f}%) ✅")
        return optimal_batch_size
    except Exception as e:
        LOGGER.warning(f"{prefix}警告 ⚠️ 检测到错误: {e}, 使用默认批量大小 {batch_size}.")
        return batch_size

代码注释说明:

  1. 函数定义autobatch函数用于自动计算最佳批量大小。
  2. 设备检查:判断模型所在的设备是CPU还是CUDA,如果是CPU则返回默认批量大小。
  3. CUDA内存检查:获取CUDA设备的总内存、保留内存和已分配内存,计算可用内存。
  4. 批量大小评估:创建不同批量大小的空张量,使用profile函数评估内存使用情况。
  5. 线性拟合:使用多项式拟合方法估算最佳批量大小,并进行异常处理以确保安全性。
  6. 返回值:返回计算出的最佳批量大小,或在出现错误时返回默认值。

这个程序文件的主要功能是自动估算在使用PyTorch进行YOLO模型训练时,最佳的批处理大小(batch size),以便合理利用可用的CUDA内存。程序中包含了几个主要的函数和步骤。

首先,文件导入了一些必要的库,包括deepcopy用于深拷贝模型,numpy用于数值计算,torch用于深度学习框架的操作,以及ultralytics库中的一些工具函数和常量。

check_train_batch_size函数是用来检查给定YOLO模型的训练批处理大小。它接受三个参数:模型、图像大小(默认为640)和一个布尔值amp,指示是否使用自动混合精度(AMP)。在函数内部,使用torch.cuda.amp.autocast上下文管理器来启用AMP,然后调用autobatch函数来计算最佳的批处理大小。

autobatch函数是核心功能实现,负责自动估算最佳的批处理大小。它接受四个参数:模型、图像大小、可用CUDA内存的使用比例(默认为60%)和默认的批处理大小(默认为16)。函数首先检查模型所在的设备,如果设备是CPU,则直接返回默认的批处理大小。如果CUDA未被检测到,或者torch.backends.cudnn.benchmark为真,函数也会返回默认的批处理大小。

接下来,函数会检查CUDA内存的使用情况,包括总内存、已保留内存和已分配内存,并计算出可用的自由内存。然后,函数会定义一个批处理大小的列表,并尝试创建一些空的张量以便进行性能分析。通过调用profile函数,函数会对不同的批处理大小进行性能测试,并记录每个批处理大小所需的内存。

函数接着使用一阶多项式拟合来估算最佳的批处理大小。如果在测试过程中某些批处理大小失败,函数会选择上一个安全的批处理大小。如果计算出的批处理大小不在合理范围内(小于1或大于1024),则会返回默认的批处理大小。

最后,函数会记录实际使用的批处理大小和内存使用情况,并返回计算出的最佳批处理大小。如果在执行过程中发生异常,函数会捕获异常并返回默认的批处理大小,同时记录警告信息。

总体而言,这个程序文件通过对CUDA内存的动态监测和性能分析,帮助用户在训练YOLO模型时选择合适的批处理大小,以提高训练效率和性能。

11.6 70+种YOLOv8算法改进源码大全和调试加载训练教程(非必要)\ultralytics\solutions_init_.py
# Ultralytics YOLO 🚀, AGPL-3.0 license

# 这段代码是关于Ultralytics YOLO(You Only Look Once)模型的实现。
# YOLO是一种实时目标检测系统,能够快速准确地识别图像中的物体。

# 由于原始代码未提供具体实现,以下是YOLO模型的一些核心概念和功能的注释示例:

# 1. 导入必要的库
# 这里可能会导入PyTorch、NumPy、OpenCV等库,用于深度学习和图像处理。

# 2. 定义YOLO模型类
# 该类通常会包含模型的结构定义、前向传播方法以及加载预训练权重的方法。

# 3. 数据预处理
# 在输入图像之前,通常需要对图像进行缩放、归一化等处理,以适应模型的输入要求。

# 4. 前向传播
# 模型会通过神经网络进行前向传播,计算出每个检测框的类别和置信度。

# 5. 非极大值抑制(NMS)
# 为了去除重复的检测框,通常会使用NMS算法来保留置信度最高的框。

# 6. 输出结果
# 最终,模型会输出检测到的物体类别、位置(边界框坐标)和置信度。

# 以上是YOLO模型的一些核心部分和功能,具体实现可能会有所不同。

以上是对YOLO模型核心部分的注释示例,具体代码实现需要根据实际代码内容进行调整。

这个程序文件的开头包含了一行注释,说明了该文件属于Ultralytics YOLO项目,并且使用了AGPL-3.0许可证。Ultralytics YOLO是一个广泛使用的目标检测算法,YOLO(You Only Look Once)系列以其高效性和准确性而闻名。AGPL-3.0许可证是一种开源许可证,允许用户自由使用、修改和分发代码,但要求在分发时也必须提供源代码。

在这个文件中,可能会包含与YOLOv8算法相关的各种功能和模块的初始化代码。具体来说,__init__.py文件通常用于将一个目录标识为一个Python包,使得可以通过导入该包来使用其中的模块和功能。虽然在提供的代码中只有一行注释,但这个文件的存在表明该目录下可能有其他Python文件和模块,这些模块可能实现了YOLOv8算法的不同功能或改进。

总的来说,这个文件是Ultralytics YOLO项目的一部分,旨在为用户提供一个结构化的方式来使用和扩展YOLOv8算法。

12.系统整体结构(节选)

整体功能和构架概括

该项目是一个基于YOLOv8算法的目标检测框架,旨在提供一个灵活且高效的环境,用于训练、验证和推理目标检测模型。项目结构清晰,包含多个模块和工具,支持模型的构建、数据处理、训练过程的管理以及结果的可视化。通过引入不同的网络结构和回调机制,用户可以方便地扩展和定制模型以满足特定需求。

主要功能模块包括:

  • 用户界面(UI):提供了一个简单的界面来启动和管理模型训练。
  • 模型构建:实现了多种网络结构(如CSWin Transformer、ConvNextV2等),以支持不同的目标检测任务。
  • 回调机制:允许用户在训练和验证过程中插入自定义逻辑,以便进行更细致的监控和调整。
  • 自动批处理大小调整:根据可用的CUDA内存动态调整训练的批处理大小,以优化训练效率。
  • 训练管理:包括数据加载、模型训练、损失记录和指标绘制等功能。

文件功能整理表

文件路径功能描述
D:\tools\20240809\code\ui.py提供一个简单的用户界面,通过Streamlit启动YOLO模型的训练和推理。
D:\tools\20240809\code\70+种YOLOv8算法改进源码大全和调试加载训练教程(非必要)\ultralytics\nn\backbone\CSwomTramsformer.py实现CSWin Transformer模型结构,包含多个构建块和模型初始化,适用于计算机视觉任务。
D:\tools\20240809\code\code\ultralytics\utils\callbacks\base.py定义训练、验证、预测和导出过程中的回调函数,允许用户在特定时刻插入自定义逻辑。
D:\tools\20240809\code\train.py负责训练YOLO模型,包含数据集构建、数据加载、模型设置、训练过程管理等功能。
D:\tools\20240809\code\code\ultralytics\utils\autobatch.py自动估算最佳的批处理大小,以优化CUDA内存使用,提升训练效率。
D:\tools\20240809\code\70+种YOLOv8算法改进源码大全和调试加载训练教程(非必要)\ultralytics\solutions\__init__.py将该目录标识为一个Python包,便于导入和使用其中的模块和功能。
D:\tools\20240809\code\70+种YOLOv8算法改进源码大全和调试加载训练教程(非必要)\ultralytics\models\yolo\__init__.py初始化YOLO模型相关模块,便于组织和管理YOLO模型的实现。
D:\tools\20240809\code\code\ultralytics\models\yolo\obb\val.py实现YOLO模型的验证逻辑,评估模型在验证集上的性能。
D:\tools\20240809\code\70+种YOLOv8算法改进源码大全和调试加载训练教程(非必要)\ultralytics\nn\backbone\convnextv2.py实现ConvNextV2模型结构,作为YOLO模型的一个可选骨干网络。
D:\tools\20240809\code\code\ultralytics\assets\__init__.py将该目录标识为一个Python包,便于导入和使用其中的资源和资产。
D:\tools\20240809\code\70+种YOLOv8算法改进源码大全和调试加载训练教程(非必要)\ultralytics\models\nas\__init__.py初始化NAS(神经架构搜索)相关模块,便于组织和管理与架构搜索相关的实现。
D:\tools\20240809\code\code\ultralytics\nn\modules\__init__.py将该目录标识为一个Python包,便于导入和使用其中的神经网络模块。
D:\tools\20240809\code\70+种YOLOv8算法改进源码大全和调试加载训练教程(非必要)\ultralytics\nn\extra_modules\RFAConv.py实现RFA(Receptive Field Attention)卷积模块,作为YOLO模型的一个可选组件。

以上表格整理了每个文件的功能,帮助理解整个项目的结构和各个模块的作用。

注意:由于此博客编辑较早,上面“11.项目核心源码讲解(再也不用担心看不懂代码逻辑)”中部分代码可能会优化升级,仅供参考学习,完整“训练源码”、“Web前端界面”和“70+种创新点源码”以“13.完整训练+Web前端界面+70+种创新点源码、数据集获取(由于版权原因,本博客仅提供【原始博客的链接】,原始博客提供下载链接)”的内容为准。

13.完整训练+Web前端界面+70+种创新点源码、数据集获取(由于版权原因,本博客仅提供【原始博客的链接】,原始博客提供下载链接)

19.png

参考原始博客1: https://gitee.com/qunshansj/detect_people467

参考原始博客2: https://github.com/VisionMillionDataStudio/detect_people467

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值