概率论的学习和整理--番外5:等差数列求和公式,等比数列求和公式,以及比较 数列,函数,级数等相似概念

  • 等差数列:算术数列,arithmetic sequence, 算术级数,中项是算术平均数
  • 等比数列:几何数列, geometric sequence, 几何级数,中项是几何平均数

1 数列

1.1 什么是数列

  • 数列:sequence of number
  • 元素必须是数字
  • array1=1,2,3,4,5,6
  • 数列就是数组,多个数存储在一起,数列名代表了这些所有数组里的所有数
  • 可见数列也是函数,数列名就是函数名?

数列举例

  1. array1=1,2,3,4,5,6
  2. 斐波拉契数列=1,2,3,5,8,13...
  3. 三角形数(点阵)=1,3,6,10,15
  4. 正方形数(点阵)=1,4,9,16

1.2 数列和各种概念比较

  • 数列:一组数,一般是一维的
  • 数组: 多个同类型数据的集合( 指代 / 容器)
  •              一维数组就是数列,二维数组就是矩阵

和数学里不一样,编程里每个语言对这些的定义都不同

  • 比如,一般编程语言里,数组必须存储相同类型的数据
  • 但是python是动态语言
  • python里数组list,可以是一组数,甚至是不同数据类型的一组数据
  • python里的元组tuple,生成后不可改变
  • python里的字典,不允许重复

1.3 数列分类

  • 按数列项数多少分: 有穷数列,无穷数列
  • 按数列大小变化规律分: 递增数列,递减数列,摇摆数列
  • 按数列变化规律分: 周期数列
  • 按数列项数多少分: 等差数列,等比数列,等和数列
  • 按数列项数性质分: 常数数列

1.4 数列的解析表达

  • 如果数列有规律,那就可能可以用函数表示
  • 一般有规律的数列的表达式可以为
  1. 通项公式
  2. 递推公式

等差数列  Arithmetic Progression / arithmetic sequence

2.1 等差数列

  • 等差数列  Arithmetic Progression
  • 公差 d (common difference),公差通常用字母d表示
  • 通项公式:
  • An = A1+ (n-1) *d   
  • An=Sn-Sn-1, 特殊A1=S1
  • 任意两项Am,An的关系为:An=Am+(n-m)d,等差数列广义的通项公式。

2.2 通项公式变形

  • An = A1+ (n-1) *d
  • An = A1+ n*d -1*d
  • An = n*d + (A1-1*d )
  • An= k*n+b
  • 类一元一次函数

2.3 等差数列的求和公式 (等差数列的级数公式)

  • 等差数列的前n项和等于首末两项的和与项数乘积的一半
  • a1+an=a2+an-1=a3+an-2=…=ak+an-k+1,k∈N*
  • 隐藏Sn=n/2* (A1+An)

3 等比数列  Geometric Progression / geometric sequence

3.1  等比数列

  • 等比数列  Geometric Progression
  • 公比  r(common ratio)
  • 通项公式:An=A1*Q^(n-1)
  • 通项公式:An=Sn-Sn-1 ,n>=2

3.2 等比数列的性质

  • 在等比数列中,依次每 k项之和仍成等比数列。
  • 等比中项:q、r、p成等比数列,则 r 则为 q ,p的 等比中项。
  • 在等比数列中,首项 与公比q都不为零。

其实,射影定理,也是等比数列的应用吧

3.3 等比数列的求和 (等比数列的级数)

等比数列的求和 (等比数列的级数)

  • 如果 公比大于1,无穷情况下,是不收敛的,趋近于0的
  • 如果公比小于1,无穷情况下,是收敛的,趋近于a1*1/(1-r)
  • 无论公比多少,不等于0,有限个数情况下的求和

3.4 等比数列和“几何(geo)关系”,可叫 几何数列

  • 等比数列,中间项是前后两项的几何平均数
  • A1*p,  A1*p^2  A1*p^3
  • A1*p * A1*p^3 = A1^2*p^4 =(A1*p^2)^2
  • 等比数列,可以叫几何数列
  • 英文里
  • 等差数列:算术数列,arithmetic sequence, 算术级数,中项是算术平均数
  • 等比数列:几何数列, geometric sequence, 几何级数,中项是几何平均数

3.4.1 推论

  • 数字呈几何级数增长,其实就是数列呈现等比数列的特征
  • 数字呈指数级增长,其实就是数列呈现 f(x)=a^x的指数级关系

3.5 等比数列的和

 等比数列和的推导过程

4 函数  function()

4.1 函数的定义

  • 数学定义:形如 y=f(x) 的为函数
  • f(x) 为函数 ,y指代这个函数
  • 程序里,有输入有输出的可以认为为函数

4.2 函数一般都有3种表示方法

  • 列表法
  • 图形法
  • 解析法 (不一定有解析式/ 通项公式)

5 级数 (级数就是数列的求和函数)

5.1 级数 series

  • 级数是指将数列的项依次用加号连接起来的函数。
  • 典型的级数有正项级数、交错级数、幂级数、傅里叶级数等。
  • 级数首先是一个函数
  • 是把一个数列里得元素用 + 加号连接起来形成得一个表达式,由于有= 变成了函数
  • 级数是函数,有返回值,返回值就是 这些元素 求和得结果

5.2 级数的表达式

5.3 简单级数

  • 等差数列的和,也可以称为级数吧
  • 等比数列的和,也可以称为级数吧

比如 平方和级数

5.4 复杂级数(以后学习...)

  • 典型的级数有正项级数、交错级数、幂级数、傅里叶级数等。
  • 幂级数,就是级数项之间是几次方的关系
  • 数项级数

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值