- 等差数列:算术数列,arithmetic sequence, 算术级数,中项是算术平均数
- 等比数列:几何数列, geometric sequence, 几何级数,中项是几何平均数
1 数列
1.1 什么是数列
- 数列:sequence of number
- 元素必须是数字
- array1=1,2,3,4,5,6
- 数列就是数组,多个数存储在一起,数列名代表了这些所有数组里的所有数
- 可见数列也是函数,数列名就是函数名?
数列举例
- array1=1,2,3,4,5,6
- 斐波拉契数列=1,2,3,5,8,13...
- 三角形数(点阵)=1,3,6,10,15
- 正方形数(点阵)=1,4,9,16
1.2 数列和各种概念比较
- 数列:一组数,一般是一维的
- 数组: 多个同类型数据的集合( 指代 / 容器)
- 一维数组就是数列,二维数组就是矩阵
和数学里不一样,编程里每个语言对这些的定义都不同
- 比如,一般编程语言里,数组必须存储相同类型的数据
- 但是python是动态语言
- python里数组list,可以是一组数,甚至是不同数据类型的一组数据
- python里的元组tuple,生成后不可改变
- python里的字典,不允许重复
1.3 数列分类
- 按数列项数多少分: 有穷数列,无穷数列
- 按数列大小变化规律分: 递增数列,递减数列,摇摆数列
- 按数列变化规律分: 周期数列
- 按数列项数多少分: 等差数列,等比数列,等和数列
- 按数列项数性质分: 常数数列
1.4 数列的解析表达
- 如果数列有规律,那就可能可以用函数表示
- 一般有规律的数列的表达式可以为
- 通项公式
- 递推公式
2 等差数列 Arithmetic Progression / arithmetic sequence
2.1 等差数列
- 等差数列 Arithmetic Progression
- 公差 d (common difference),公差通常用字母d表示
- 通项公式:
- An = A1+ (n-1) *d
- An=Sn-Sn-1, 特殊A1=S1
- 任意两项Am,An的关系为:An=Am+(n-m)d,等差数列广义的通项公式。
2.2 通项公式变形
- An = A1+ (n-1) *d
- An = A1+ n*d -1*d
- An = n*d + (A1-1*d )
- An= k*n+b
- 类一元一次函数
2.3 等差数列的求和公式 (等差数列的级数公式)
- 等差数列的前n项和等于首末两项的和与项数乘积的一半
- a1+an=a2+an-1=a3+an-2=…=ak+an-k+1,k∈N*
- 隐藏Sn=n/2* (A1+An)
3 等比数列 Geometric Progression / geometric sequence
3.1 等比数列
- 等比数列 Geometric Progression
- 公比 r(common ratio)
- 通项公式:An=A1*Q^(n-1)
- 通项公式:An=Sn-Sn-1 ,n>=2
3.2 等比数列的性质
- 在等比数列中,依次每 k项之和仍成等比数列。
- 等比中项:q、r、p成等比数列,则 r 则为 q ,p的 等比中项。
- 在等比数列中,首项 与公比q都不为零。
其实,射影定理,也是等比数列的应用吧
3.3 等比数列的求和 (等比数列的级数)
等比数列的求和 (等比数列的级数)
- 如果 公比大于1,无穷情况下,是不收敛的,趋近于0的
- 如果公比小于1,无穷情况下,是收敛的,趋近于a1*1/(1-r)
- 无论公比多少,不等于0,有限个数情况下的求和
3.4 等比数列和“几何(geo)关系”,可叫 几何数列
- 等比数列,中间项是前后两项的几何平均数
- A1*p, A1*p^2 A1*p^3
- A1*p * A1*p^3 = A1^2*p^4 =(A1*p^2)^2
- 等比数列,可以叫几何数列
- 英文里
- 等差数列:算术数列,arithmetic sequence, 算术级数,中项是算术平均数
- 等比数列:几何数列, geometric sequence, 几何级数,中项是几何平均数
3.4.1 推论
- 数字呈几何级数增长,其实就是数列呈现等比数列的特征
- 数字呈指数级增长,其实就是数列呈现 f(x)=a^x的指数级关系
3.5 等比数列的和
等比数列和的推导过程
4 函数 function()
4.1 函数的定义
- 数学定义:形如 y=f(x) 的为函数
- f(x) 为函数 ,y指代这个函数
- 程序里,有输入有输出的可以认为为函数
4.2 函数一般都有3种表示方法
- 列表法
- 图形法
- 解析法 (不一定有解析式/ 通项公式)
5 级数 (级数就是数列的求和函数)
5.1 级数 series
- 级数是指将数列的项依次用加号连接起来的函数。
- 典型的级数有正项级数、交错级数、幂级数、傅里叶级数等。
- 级数首先是一个函数
- 是把一个数列里得元素用 + 加号连接起来形成得一个表达式,由于有= 变成了函数
- 级数是函数,有返回值,返回值就是 这些元素 求和得结果
5.2 级数的表达式
5.3 简单级数
- 等差数列的和,也可以称为级数吧
- 等比数列的和,也可以称为级数吧
比如 平方和级数
5.4 复杂级数(以后学习...)
- 典型的级数有正项级数、交错级数、幂级数、傅里叶级数等。
- 幂级数,就是级数项之间是几次方的关系
- 数项级数