线性代数的学习和整理6:如何表示向量/矩阵? 矩阵就是向量组,矩阵的本质是什么?

本文介绍了向量和矩阵的基本概念,包括向量的表示方法(代数和几何),以及矩阵作为向量组的特性,如加法、数乘和点乘的等价关系。重点讲解了矩阵中元素的位置如何影响结果,并揭示了矩阵本质上是旋转和缩放的工具。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

0 参考的知识点和目录

1 向量

1.1 向量的概念

1.2 向量如何表示

1.3 向量/矩阵的优秀表示方法:即向量空间内的有向线段

2 矩阵

2.1 矩阵就是多个列向量的集合/合并(& 而不是 +),矩阵就是多个列向量的一种简化书写方式?

2.2 矩阵的加法  =等价于=  向量的加法

2.3 矩阵的数乘  =等价于=  向量的数乘 

2.4 矩阵的点乘 =等价于=  列向量(或者行向量)的点乘

3 矩阵的特点

3.1 矩阵里不同位置的元素,影响范围是指定的有规律的

3.1.1 矩阵里数字的位置和影响范围

3.2 矩阵的本质是旋转和缩放

3.2.1 各种缩放/旋转的矩阵效果

3.2.2 矩阵里数字的效果


0 参考的知识点和目录

1 向量

1.1 向量的概念

  • 向量/数组:一组有序的数
  • 对应概念
  • 标量/数:一个数字,单个的数

1.2 向量如何表示

常规的代数表示方法

  • 比如,这样的向量 [1,5]    [1,2,3]   [1,3,5,7,9]

一维的几何方法表示

  • 一般的表示方法就是
  1. 代数表示方法,基本就是原样列举: [1,2,3]  和  [1,3,2] 
  2. 几何表示,比如用坐标轴上的点,表示向量/数组中的多个 数字元素。但是这好像没啥意义,只是简单的用一条线上的不同点,表示了这个离散的数组,而且在坐标轴上还看不出来次序呢。
  3. 比如下图,[1,2,3]  和  [1,3,2]  就不好区分

 二维的坐标轴表示

  • 如果是2维的,比如是2个向量呢
  • 用一根数量轴表示,全叠一起了,更不行把
  • 比如表示1个2维向量 [1,3]
  • 比如表示2个2维向量 [1,3] 和 [2,4]
  • 比如表示2个2维向量 [3,1] 和 [4,2]

方式1:

  • 如果把1个向量的全部元素全部标记在1个坐标轴上,不但有时候没法区分1个向量,有时候也无法区别2个向量。

方式2:

  • 如果把1个向量的不同元素,映射为不同坐标轴上的点,那么向量本身就是成用多个坐标轴表示的一个有向线段。
  • 这个有向线段,起点永远是原点,终点就是向量坐标(向量的元素)
  • 只要向量的元素,或元素排序不同,最终向量的图形显示就会不同!
  • 显然这个表示方法更好!

1.3 向量/矩阵的优秀表示方法:即向量空间内的有向线段

所以数学家们选的这个向量表示方法确实很巧妙,向量空间=张成空间

  • 向量空间必须有原点
  • 所有的向量都从原点出发
  • 每个向量都是起点是原点,终点就是向量坐标(向量的元素)的一条有向线段
  • 简化来看,终点(终点的坐标组)其实就可以代表向量了

2 矩阵=向量组

某些场合,列向量可以基本等价于行向量。乘法时不行。

  • 矩阵就是多个列向量的集合
  • 矩阵就是向量组
  • 矩阵就是多个列向量的简要写法
  • 矩阵完全可以拆分为多个列向量,只能用拆分为多个列向量的方法
  • 反之,列向量可以合并为矩阵,只能用 and这种符号
  • 因为矩阵 =  列向量1 & 列向量2 & ..... 按顺序从左到右合并的关系,而不是向量相加的关系

\begin{bmatrix} a11 & a12 \\ a21 & a22\end{bmatrix} = \begin{bmatrix} a11 \\ a21 \end{bmatrix} and \begin{bmatrix} a12 \\ a22\end{bmatrix} 

但是只能用 合并/and 来形容,而不能用加法来形如多向量合并为矩阵这个过程

\begin{bmatrix} a11 & a12 \\ a21 & a22\end{bmatrix} = \begin{bmatrix} a11 \\ a21 \end{bmatrix} + (?) \begin{bmatrix} a12 \\ a22\end{bmatrix}

矩阵 ≠ 列向量1 & 列向量2 & .....

矩阵 ≠ 列向量1+列向量2+ .....

2.1 矩阵就是多个列向量的集合/合并(& 而不是 +),矩阵就是多个列向量的一种简化书写方式?对,矩阵就是向量组

矩阵的列向量

  • 矩阵的每一列向量都代表这个方向的基底ei 走到了对应列向量的位置。
  • 比如这个矩阵 \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} ,它实际是 \begin{bmatrix} 1 \\ 3 \end{bmatrix}  和  \begin{bmatrix} 2 \\ 4 \end{bmatrix}  这2个列向量组成的。
  • 第1个列向量 \begin{bmatrix} 1 \\ 3 \end{bmatrix} 是第1个列向量对应的基 \begin{bmatrix} 1 \\ 0 \end{bmatrix} ,伸缩旋转到 \begin{bmatrix} 1 \\ 3 \end{bmatrix} 的位置
  • 第2个列向量 \begin{bmatrix} 2\\ 4 \end{bmatrix} 是第2个列向量对应的基 \begin{bmatrix} 0 \\ 1 \end{bmatrix} ,伸缩旋转到 \begin{bmatrix} 2 \\ 4 \end{bmatrix} 的位置

2.2 矩阵的加法  =等价于=  向量的加法

 简化书写,浓缩书写

  • 矩阵是把多个列向量写在一起的简化形式
  • 也就是说以下是等价的:
  1. 如果把矩阵拆为多个列向量
  2. 矩阵相加,等于多个列向量分别相加后,再次合并为矩阵

2.3 矩阵的数乘  =等价于=  向量的数乘 

  1. 如果把矩阵拆为多个列向量
  2. 矩阵标量乘法,等于多个列向量分别标量相乘后,再次合并为矩阵

2.4 矩阵的点乘 =等价于=  列向量(或者行向量)的点乘

  • 矩阵的乘法,要特别注意,左乘和右乘
  • 下面是AX=b的情况
  • 需要把A拆为列向量
  • 矩阵乘法和列向量乘法是等价的

  • 下面是XA=b的情况
  • 需要把A拆为行向量(反正要灵活一点)
  • 矩阵乘法和这里拆的行向量乘法也是等价的

3 矩阵的特点

3.1 矩阵里不同位置的元素,影响范围是指定的有规律的

3.1.1 矩阵里数字的位置和影响范围

  • 矩阵里的数字的位置
  • 矩阵拆分为列向量

比如如果是 A*X=Y,   x左乘矩阵A

\begin{bmatrix} a11 & a12 \\ a21 & a22\end{bmatrix} * X=Y 

\begin{bmatrix} a11 & a12 \\ a21 & a22\end{bmatrix} * \begin{bmatrix} b11 & b12 \\ b21 & b22\end{bmatrix} = \begin{bmatrix} a11*b11+a12*b21 & a11*b12+a12*b22 \\ a21*b11+a22*b21 & a21*b12+a22*b22\end{bmatrix} 

展开下

  •  位置在a11的元素,会影响矩阵结果的,第1行第1个元素,第2个元素
  •  位置在a12的元素,会影响矩阵结果的,第1行第1个元素,第2个元素
  • 总结 :第1行元素a11,a12 只会影响结果矩阵的第1行的内容
  •  位置在a21的元素,会影响矩阵结果的,第2行第1个元素,第2个元素
  •  位置在a22的元素,会影响矩阵结果的,第2行第1个元素,第2个元素
  • 总结:第2行元素a11,a12 只会影响结果矩阵的第2行的内容

所以

  • 总结 :矩阵A第1行元素只会影响结果矩阵Y(或b)的第1行的内容
  • 总结: 矩阵A第2行元素只会影响结果矩阵Y(或b)的第2行的内容

A*X=Y\rightarrow \begin{bmatrix} 2 & 0 \\ 0 & 3\end{bmatrix} *X=Y \rightarrow \begin{bmatrix} 2 & 0 \\ 0 & 3\end{bmatrix} *\begin{bmatrix} b11 & b12 \\ b21 & b22\end{bmatrix} =\begin{bmatrix} 2*b11 & 2*b12 \\ 3*b21 & 3*b22\end{bmatrix} 

  • A矩阵左上角2,只会影响b11 和b12
  • A矩阵右下角3,只会影响b21 和b22 

3.2 矩阵的本质是旋转和缩放

3.2.1 各种缩放/旋转的矩阵效果

  • 参考前面总结得各种特殊矩阵

线性代数的学习和整理7:各种特殊效果矩阵汇总_奔跑的犀牛先生的博客-CSDN博客行向量列向量[ 1 00 1]应该很多种把[ 1 00 2][ 5 01 0][] 零矩阵正交矩阵。https://blog.csdn.net/xuemanqianshan/article/details/132390306?spm=1001.2014.3001.5502

3.2.2 矩阵里数字的效果

  • 矩阵里的数字0
  • 矩阵里的数字1,表示不进行缩放
  • 矩阵里的数字2等,表示缩放
  • 矩阵里的数字-3  表示缩放-3倍,并且反向

比如下面这个矩阵:单位矩阵,单位矩阵如果放左边,就是表示对矩阵的第1行元素*1,对第2行元素*1,其实就是什么都不做。

 1  0 

 0  1 

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值