概率论得学习和整理30: 用EXCEL 描述泊松分布 poisson distribution

目录

1 泊松分布的基本内容

1.1 泊松分布的关键点

1.1.1 属于离散分布

1.1.2 泊松分布的特点:每个子区间内概率相等 , λ就是平均概率

1.2 核心参数

1.3 pmf公式

 1.4 期望和方差  

2 例1:用EXCEL计算泊松分布的概率

3  比较λ=不同值时,泊松分布的图形


1 泊松分布的基本内容 poisson distribution

  • 泊松分布,既复杂又简单
  • pmf公式看起来有点像正态分布的,实际要简单的多
  • 核心:平均概率= λ, 期望=  λ ,方差=  λ

1.1 泊松分布的关键点

1.1.1 属于离散分布

  • 泊松分布和二项分布,01分布一样,也是离散的
  • 离散的分布只有点概率。
  • 相反,连续的分布只有区间概率,点概率=0          

1.1.2 泊松分布的特点:每个子区间内概率相等 , λ就是平均概率

  • 特点:将特定机会区间,分割为大量相等的子区间,每个子区间内概率相等                       
  • 子区间:一段时间,1个平面,1个立体空间                        
  • 事件在子区间内发生超过1次的概率,越来越逼近0                        

                            
 

1.2 核心参数

重要参数                            

  •     n    总次数?没有这个,不考虑这个                    
  •     λ    λ>0,表示特定机会区间内事件发生的平均次数                    
  •     e    自然对数的底数,2.718                    
  •     k    事件发生k次                    
  •     p(x=k)    事件发生k次的概率    

1.3 pmf公式

  • pmf 
  • p(x=k)    =    e^-λ * λ^k /k!
  • EXCEL内 e^x=exp(x),k!=fact(k)

 

 1.4 期望和方差  

  • 期望= λ       
  • 方差=λ    

2 例1:用EXCEL计算泊松分布的概率

  • 可以直接用
  • 泊松分布的原始公式,计算        p(x=k)=e^-λ * λ^k /k!
  • 可以用EXCEL提高的封装公式    p(x=k)=poisson.dist()

3  比较λ=不同值时,泊松分布的图形

  • λ越大,图形更像正态分布
  • λ越小,更像单调递减的图形

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值