有关不等式的证明方法总结

不等式的证明

利用中值定理证明不等式
  1. 拉格朗日中值定理:
    设函数 f ( x ) f(x) f(x)满足:在[a, b]上连续,在(a, b)上可导,
    则在(a, b) 内至少存在一点 ξ \xi ξ,使得 f ( b ) − f ( a ) = f ′ ( ξ ) ( b − a ) f(b)-f(a)=f'(\xi)(b-a) f(b)f(a)=f(ξ)(ba)

  2. 柯西中值定理:
    设函数 f ( x ) f(x) f(x) g ( x ) g(x) g(x)满足:在[a, b]上连续,在(a, b)上可导,且 g ′ ( x ) g'(x) g(x) ̸ = 0 \not=0 ̸=0
    则在(a, b) 内至少存在一点 ξ \xi ξ,使得 f ′ ( ξ ) g ′ ( ξ ) { {f'(\xi)}\over{g'(\xi)}} g(ξ)f(ξ)= f ( b ) − f ( a ) g ( b ) − g ( a ) { {f(b)-f(a)}\over{g(b)-g(a)}} g(b)g(a)f(b)f(a)

例:当 x &gt; 0 x&gt;0 x>0时, 证明 x 1 + x { {x} \over {1+x}} 1+xx< ln(1+x) < x.
证: 设 f ( t ) = l n ( 1 + t ) f(t)=ln(1+t) f(t)=ln(1+t), 满足 f ( t ) f(t) f(t) t ∈ [ 0 , x ] t\in[0,x] t[0,x]上连续, t ∈ ( 0 , x ) t\in(0,x) t0,x上可导
则, f ( x ) − f ( 0 ) = f ′ ( ξ ) ( x − 0 ) f(x)-f(0)=f&#x27;(\xi)(x-0) f(x)f(0)

  • 6
    点赞
  • 20
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值