中值定理7----不等式证明

题型:不等式证明

一阶导数大于0,原函数递增
二阶导数大于0,一阶导数递增

例题1. 已知: e &lt; a &lt; b e&lt;a&lt;b e<a<b,请你证明: a b &lt; b a a^b&lt;b^a ab<ba

证:

a b &lt; b a ⟺ b ln ⁡ a − a ln ⁡ b &gt; 0 a^b&lt;b^a \Longleftrightarrow b\ln a - a\ln b &gt; 0 ab<bablnaalnb>0

1.构造辅助函数:
f ( x ) = x ln ⁡ a − a ln ⁡ x , f ( a ) = 0 f(x)=x\ln a - a\ln x, f(a)=0 f(x)=xlnaalnx,f(a)=0

注解:一般把大的替换成x,小的保留,题目条件中给出b>a,所以保留a替换b

2.辅助函数求导
f ′ ( x ) = ln ⁡ a − a x &gt; 0 ( x &gt; a ) f&#x27;(x)=\ln a-\frac{a}{x}&gt;0 \quad (x&gt;a) f(x)=lnaxa>0(x>a)

注解:
因为b被替换成了x,所以原题目中的b>a条件变成了x>a,所以 a x &lt; 1 \frac{a}{x}&lt;1 xa<1.
因为 ln ⁡ e = 1 , 题 目 已 知 条 件 a &gt; e , 所 以 ln ⁡ a &gt; 1 \ln e=1,题目已知条件a&gt;e,所以\ln a &gt;1 lne=1,a>e,lna>1
⟹ ln ⁡ a − a x &gt; 0 \Longrightarrow \ln a - \frac{a}{x}&gt;0 lnaxa>0

{ f ( a ) = 0 f ′ ( x ) &gt; 0 ⇒ f ( x ) &gt; 0 ( x &gt; 0 ) \begin{cases}f(a)=0 \\ f&#x27;(x)&gt;0 \end{cases} \Rightarrow f(x)&gt;0 \quad (x&gt;0) {f(a)=0f(x)>0f(x)>0(x>0)

注解: f ( a ) = 0. 那 么 f ( a + 1 ) &gt; 0 , 也 就 是 比 a 大 的 数 代 入 进 函 数 都 能 大 于 0 , 因 为 f ′ ( x ) &gt; 0 说 明 这 个 函 数 的 单 调 递 增 的 f(a)=0.那么f(a+1)&gt;0,也就是比a大的数代入进函数都能大于0,因为f&#x27;(x)&gt;0说明这个函数的单调递增的 f(a)=0.f(a+1)>0,a0f(x)>0

∵ b &gt; a \because b&gt;a b>a
∴ f ( b ) &gt; 0 \therefore f(b)&gt;0 f(b)>0
即: a b &lt; b a a^b&lt;b^a ab<ba

例题2 证明:当 x &gt; 0 x&gt;0 x>0时,有 x 1 + x &lt; ln ⁡ ( 1 + x ) &lt; x \frac{x}{1+x}&lt;\ln (1+x)&lt;x 1+xx<ln(1+x)<x

1.构造辅助函数
f ( x ) = ln ⁡ ( 1 + x ) − x 1 + x f(x)=\ln (1+x) - \frac{x}{1+x} f(x)=ln(1+x)1+xx , f ( 0 ) = 0 f(0)=0 f(0)=0

2.辅助函数求导
f ′ ( x ) = 1 1 + x − 1 ( 1 + x ) 2 &gt; 0 f&#x27;(x)=\frac{1}{1+x}-\frac{1}{(1+x)^2}&gt;0 f(x)=1+x1(1+x)21>0, ( x &gt; 0 ) (x&gt;0) (x>0)

3.综合1.2的结论
{ f ( 0 ) = 0 f ′ ( x ) &gt; 0 ( x &gt; 0 ) ⇒ f ( x ) &gt; 0 ( x &gt; 0 ) \begin{cases}f(0)=0 \\ f&#x27;(x)&gt;0 \quad (x&gt;0) \end{cases} \Rightarrow f(x)&gt;0 \quad (x&gt;0) {f(0)=0f(x)>0(x>0)f(x)>0(x>0)
x &gt; 0 时 , x 1 + x &lt; ln ⁡ ( 1 + x ) x&gt;0时,\frac{x}{1+x} &lt; \ln (1+x) x>0,1+xx<ln(1+x)

接着证明第二段
g ( x ) = x − ln ⁡ ( 1 + x ) , g ( 0 ) = 0 g(x)=x-\ln (1+x), g(0)=0 g(x)=xln(1+x),g(0)=0
g ′ ( x ) = 1 − 1 1 + x &gt; 0 ( x &gt; 0 ) g&#x27;(x)=1-\frac{1}{1+x}&gt;0 \quad (x&gt;0) g(x)=11+x1>0(x>0)
{ g ( 0 ) = 0 g ′ ( x ) &gt; 0 ( x &gt; 0 ) ⇒ g ( x ) &gt; 0 ( x &gt; 0 ) \begin{cases}g(0)=0 \\ g&#x27;(x)&gt;0 \quad (x&gt;0) \end{cases} \Rightarrow g(x)&gt;0 \quad (x&gt;0) {g(0)=0g(x)>0(x>0)g(x)>0(x>0)
x &gt; 0 时 , x &gt; ln ⁡ ( 1 + x ) x&gt;0时,x&gt;\ln (1+x) x>0x>ln(1+x)

综上得: x 1 + x &lt; ln ⁡ ( 1 + x ) &lt; x \frac{x}{1+x}&lt;\ln (1+x)&lt;x 1+xx<ln(1+x)<x

例题3 已 知 : f ( a ) = g ( a ) , f ′ ( a ) = g ′ ( a ) , f ′ ′ ( x ) &gt; g ′ ′ ( x ) , ( x &gt; a ) , 求 证 : 当 x &gt; a 时 , f ( x ) &gt; g ( x ) 已知:f(a)=g(a),f&#x27;(a)=g&#x27;(a),f&#x27;&#x27;(x)&gt;g&#x27;&#x27;(x),(x&gt;a),求证:当x&gt;a时,f(x)&gt;g(x) f(a)=g(a)f(a)=g(a),f(x)>g(x),(x>a),x>af(x)>g(x)

证:
φ ( x ) = f ( x ) − g ( x ) \varphi(x)=f(x)-g(x) φ(x)=f(x)g(x)

根据结论构造辅助函数, 最 后 只 要 证 出 φ ( x ) &gt; 0 最后只要证出\varphi(x)&gt;0 φ(x)>0就可以了

φ ( a ) = f ( a ) − g ( a ) = 0 \varphi(a)=f(a)-g(a)=0 φ(a)=f(a)g(a)=0 , φ ′ ( a ) = 0 , φ ′ ′ ( x ) &gt; 0 , ( x &gt; a ) \varphi&#x27;(a)=0,\varphi&#x27;&#x27;(x)&gt;0,(x&gt;a) φ(a)=0,φ(x)>0,(x>a)

题目中的条件有二阶,所以要从二阶往回推

{ φ ′ ( a ) = 0 φ ′ ′ ( x ) &gt; 0 ( x &gt; a ) ⇒ φ ′ ( x ) &gt; 0 ( x &gt; a ) \begin{cases}\varphi&#x27;(a)=0 \\ \varphi&#x27;&#x27;(x)&gt;0 \quad (x&gt;a) \end{cases} \Rightarrow \varphi&#x27;(x)&gt;0 \quad (x&gt;a) {φ(a)=0φ(x)>0(x>a)φ(x)>0(x>a)

φ ′ ( a ) = 0 , 在 a 这 一 点 的 一 阶 导 数 等 于 0 ; φ ′ ′ ( x ) &gt; 0 , 并 且 二 阶 导 数 大 于 0 , 那 么 就 可 以 得 到 一 阶 导 数 是 单 调 递 增 的 也 就 是 φ ′ ( x ) &gt; 0 。 \varphi&#x27;(a)=0,在a这一点的一阶导数等于0;\varphi&#x27;&#x27;(x)&gt;0,并且二阶导数大于0,那么就可以得到一阶导数是单调递增的也就是\varphi&#x27;(x)&gt;0。 φ(a)=0,a0φ(x)>00φ(x)>0

{ φ ( a ) = 0 φ ′ ( x ) &gt; 0 ( x &gt; a ) ⇒ φ ( x ) &gt; 0 ( x &gt; a ) \begin{cases}\varphi(a)=0 \\ \varphi&#x27;(x)&gt;0 \quad (x&gt;a) \end{cases} \Rightarrow \varphi(x)&gt;0 \quad (x&gt;a) {φ(a)=0φ(x)>0(x>a)φ(x)>0(x>a)

即: f ( x ) &gt; g ( x ) f(x)&gt;g(x) f(x)>g(x)

例题4 已知: 0 &lt; a &lt; b 证 : ln ⁡ b − ln ⁡ a &gt; 2 ( b − a ) a + b 0&lt;a&lt;b \quad 证:\ln b-\ln a&gt;\frac{2(b-a)}{a+b} 0<a<blnblna>a+b2(ba)

证:

ln ⁡ b − ln ⁡ a &gt; 2 ( b − a ) a + b ⇔ ( a + b ) ( ln ⁡ b − ln ⁡ a ) − 2 ( b − a ) &gt; 0 \ln b-\ln a&gt;\frac{2(b-a)}{a+b} \Leftrightarrow (a+b)(\ln b-\ln a)-2(b-a)&gt;0 lnblna>a+b2(ba)(a+b)(lnblna)2(ba)>0

1.构造辅助函数,跟例题1一样,把大的数b替换成x,保留小的数a
f ( x ) = ( a + x ) ( ln ⁡ x − ln ⁡ a ) − 2 ( x − a ) , f ( a ) = 0 f(x)=(a+x)(\ln x-\ln a)-2(x-a),f(a)=0 f(x)=(a+x)(lnxlna)2(xa),f(a)=0
2.辅助函数求导
f ′ ( x ) = ln ⁡ x − ln ⁡ a + a + x x − 2 = ln ⁡ x − ln ⁡ a + a x − 1 , f ′ ( a ) = 0 f&#x27;(x)=\ln x-\ln a+\frac{a+x}{x}-2=\ln x-\ln a+\frac{a}{x}-1,f&#x27;(a)=0 f(x)=lnxlna+xa+x2=lnxlna+xa1,f(a)=0
3.求二阶导
f ′ ′ ( x ) = 1 x − a x 2 = x − a x 2 &gt; 0 , ( x &gt; a ) f&#x27;&#x27;(x)=\frac{1}{x}-\frac{a}{x^2}=\frac{x-a}{x^2}&gt;0,(x&gt;a) f(x)=x1x2a=x2xa>0,(x>a)

根据题目条件 0 &lt; a &lt; b , 因 为 b 被 替 换 成 了 a , 所 以 在 辅 助 函 数 中 就 是 0 &lt; a &lt; x , 在 f ′ ′ ( x ) 中 , 分 母 是 x 2 &gt; 0 , 因 为 x &gt; a , 所 以 分 子 也 是 &gt; 0 , 所 以 整 个 二 阶 导 数 就 是 &gt; 0 0&lt;a&lt;b,因为b被替换成了a,所以在辅助函数中就是0&lt;a&lt;x,在f&#x27;&#x27;(x)中,分母是x^2 &gt;0,因为x&gt;a,所以分子也是&gt;0,所以整个二阶导数就是&gt;0 0<a<b,ba0<a<xf(x)x2>0,x>a,>0,>0

4.综合结论开始回推
{ f ′ ( a ) = 0 f ′ ′ ( x ) &gt; 0 ( x &gt; a ) ⇒ f ′ ( x ) &gt; 0 ( x &gt; a ) \begin{cases}f&#x27;(a)=0 \\ f&#x27;&#x27;(x)&gt;0 \quad (x&gt;a) \end{cases} \Rightarrow f&#x27;(x)&gt;0 \quad (x&gt;a) {f(a)=0f(x)>0(x>a)f(x)>0(x>a)

在a这一点的一阶导数=0,并且二阶导数大于0,就可以推出所有大于a这点的一阶导数都是大于0,因为一阶导数是单调递增的

{ f ( a ) = 0 f ′ ( x ) &gt; 0 ( x &gt; a ) ⇒ f ( x ) &gt; 0 ( x &gt; a ) \begin{cases}f(a)=0 \\ f&#x27;(x)&gt;0 \quad (x&gt;a) \end{cases} \Rightarrow f(x)&gt;0 \quad (x&gt;a) {f(a)=0f(x)>0(x>a)f(x)>0(x>a)

即: f ( b ) = ( a + b ) ( ln ⁡ b − ln ⁡ a ) − 2 ( b − a ) &gt; 0 f(b)=(a+b)(\ln b-\ln a)-2(b-a)&gt;0 f(b)=(a+b)(lnblna)2(ba)>0

  • 1
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值