来源:中国科学院大学,人工智能学院
期刊:remote sensing 2021
摘要:
点云配准是三维重建领域的基础研究热点之一。由于岩体表面复杂、形状任意、分辨率高,岩石点云的配准一直是一个挑战。为了克服这些困难,本文提出了一种基于局部不变量的岩石点云配准方法。首先,针对海量点云,采用基于求和向量的兴趣点滤波方法来减少点的数量;其次,将剩余感兴趣点划分为几个聚类点集,计算每个聚类的质心;然后,通过证明剩余点集的内在相似性(利用协方差矩阵的迹),确定原始点云与目标点云之间的对应关系。最后,根据相应的质心计算旋转矩阵和平移向量,并采用修正方法调整质心的位置。为了说明我们的方法在准确性和效率方面的优势,我们在多个数据集上进行了实验。实验结果表明,该方法比现有的同类方法具有更高的精度和效率(约10倍)。
关键步骤:
图1 a和b表示输入的目标点云和源点云,cd表示经过兴趣点滤波后的点,ef为聚类结果和中心,gh表示中心对应匹配。
判定平面上一点是否为突出点:
P为判定点,NPS(Pr)为P点r邻域内的点,W为高斯权重函数,若P在平面上,向量将抵消,数值较小,P在平面上,向量累积,数值较大。示意图如下:
**聚类:**通过聚类的方法来进行特征缩减,具体的使用density-based spatial clustering of applications with noise(DBSCAN)[40]算法,太大或太小的聚类半径都不能获得理想的结果,因此考虑多尺度聚类,并通过实验来获得最优的聚类半径。
**匹配:**将每个聚类点集作为研究对象,发现它们经历了不变的平移和旋转量,并根据这一特征判断聚类点集Tc和Sc之间的相似度,使用了类似刚性转换距离不变的原理,寻找符合约束的匹配。
实验结果:
NDT有不错的效果