论文阅读Efficient rock-mass point cloud registration using n-point complete graphs

来源:中科院 人工智能学院
期刊 :IEEE transactions on geoscience and remote sensing 2019

摘要:
岩体的表面是任意而复杂的。此外,地面激光扫描获取的岩体表面点云具有跨度大、分辨率高的特点。这些特征导致扫描之间的配准困难。针对这些困难,提出了一种利用n点完全图的有效方法。为了处理大量的点云,采用分步策略来减少计算中涉及的点的数量。首先,估计初始数据中每个点的高斯曲率,滤除高斯曲率低的点,只保留感兴趣的点;其次,对这些感兴趣的点进行聚类,并计算每个聚类的质心。最后,由每个质心及其n个最近邻组成的n点完全图构建描述符。通过对两个点云生成的描述子进行匹配,得到相应的点对,从而实现对准。此外,该策略固有地结合了去噪、离群值处理和过滤,使得该方法在不增加任何成本的情况下,对各种条件具有较强的适应性。在不同离群值、噪声和重叠程度的数据集上进行了实验,验证了该方法的鲁棒性。结果表明,当点间距为1 cm时,输出均方根误差在0.5 cm左右,与迭代最近点算法的均方根误差相当。运行时分析表明,该方法的总处理时间随着数据量的增加而近似线性增长。

整个方法由五个主要阶段组成,如算法1所示:高斯曲率滤波、聚类、描述子生成、配对、变换计算。其中高斯曲率滤波和聚类涉及特征提取,描述子生成和配对涉及寻找匹配对。
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值