Tensorflow保存和恢复模型

本文详细介绍了如何在TensorFlow中保存和恢复模型,包括使用检查点回调进行训练过程中的保存,以及如何恢复模型并评估其准确率。还讨论了检查点回调的配置选项,以及手动保存和加载整个模型的方法。
摘要由CSDN通过智能技术生成

原文链接save_and_restore_model

安装和导入

!pip install h5py pyyaml 

获取示例数据

from __future__ import absolute_import, division, print_function

import os

import tensorflow as tf
from tensorflow import keras

tf.__version__

(train_images, train_labels), (test_images, test_labels) = tf.keras.datasets.mnist.load_data()

train_labels = train_labels[:1000]
test_labels = test_labels[:1000]

train_images = train_images[:1000].reshape(-1, 28 * 28) / 255.0
test_images = test_images[:1000].reshape(-1, 28 * 28) / 255.0

定义模型

# Returns a short sequential model
def create_model():
  model = tf.keras.models.Sequential([
    keras.layers.Dense(512, activation=tf.nn.relu, input_shape=(784,)),
    keras.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值