图的基本概念
基本概念见教科书定义,图论概念很多
简单图和多重图
度 最小度 最大度 最小出度 最大出度
生成子图 导出子图 补图
- 子图:点不全边不全
- 生成子图:点全边不全
- 导出子图:点不全边不全,但只要出现的点,端点是出现的点集里的边必须全
补图:
千万要注意不要遗漏顶点,画的时候先把所有的点画上去,没有的边再补
完全图 有向完全图 竞赛图 正则图
点的个数就是阶数
握手定理
图的同构
彼得森图:
通路与回路 图的连通性
无向图的连通性
PS:用商集来定义连通分支还挺方便的
极小性是指如果不是删掉点割集里所有的点的话则无法达成前面的条件,点割集的所有点都需要删掉才能让连通图不连通,分支变多。
连通度相当于至少删掉几个节点(边)才不连通,有点像阶的概念
最后一个是图的最小度
点连通度 <= 边连通度 <= 图的最小度
有向图的连通性
图的矩阵表示
欧拉图 哈密顿图 最短路径
欧拉图
有没有简单的方式判定是否是欧拉图呢?
有的兄弟,有的:
无向欧拉图和半欧拉图
有向欧拉图和半欧拉图
哈密顿图
哈密顿图定义
最后一条很重要
无向哈密顿图的必要条件
必要性用来判定不是,充分性用来判定是
有桥的图,删去桥的任意一个顶点就等于把桥删了,那么删掉一个点连通分支变成2,说明肯定不是哈密顿图。
无向哈密顿图的充分条件
这个定理好理解,两个度加起来>= n-1,说明这两个点中间必然关联着一个点,通过这个点可以把这两个点连通起来。
有向哈密顿图的充分条件
左边
V
1
.
.
.
V
r
−
1
V
k
+
1
V
r
V_1...V_{r-1}V_{k+1}V_r
V1...Vr−1Vk+1Vr,右边左边
V
k
+
1
V
1
.
.
.
V
r
−
1
V
k
V_{k+1}V_1...V_{r-1}V_{k}
Vk+1V1...Vr−1Vk
平面图 对偶图 图着色
平面图的定义:
平面嵌入
注意当一条边没有分割开两个面,而是在一个面内部时,这条边在次数上要算两次,这也符合下面的定理:
欧拉公式以及推广
用归纳法可证明
下面是一系列推广定理:
平面图的判断
边的收缩
对偶图与着色
对偶图
平面图的区域着色可以转化为对偶图的点着色
对偶图相比原图,点数和面数互换了
对偶图点的度数=原平面图面的次数
自对偶图
点着色
图着色应用
二部图
简单来说就是二部图任何回路的长度都是偶数。
(1)(2)(3)是二部图,(4)不是
关键活动
略
树
无向树的定义
无向图的等价定义
生成树
基本回路系统 基本割集系统
基本回路系统是由弦产生的回路,基本割集系统是由树枝产生的,删去树枝后连接两颗子树的边就是由该树枝产生的基本割集(包括该树枝)
最小生成树
根树
有向树
注意有向树是不考虑边的方向时是一棵树
子树
也可以看做,每个点(除根节点)上面都仅连着一条边,而这些边又都是有分支节点生成的。
或者可以从握手定理来证明
哈夫曼树
略
二叉树遍历
略
参考资料
- 《离散数学》第二版 屈婉玲 —— 高等教育出版社
- 东北大学 离散数学 MOOC