欧拉图和哈密顿图

欧拉图及欧拉路径

  • 欧拉图
    • 如果图G上有一条经过所有顶点、所有边的闭路径(边不重复,顶点可以重复)
    • 充分必要条件
      • 无向图:G连通,所有顶点的度都是偶数
      • 有向图:G弱连通,每个顶点出度与入度相等
  • 欧拉路径
    • 如果图G上有一条经过所有顶点、所有边的路径(边不重复,顶点可以重复)
    • 充分必要条件
      • 无向图:G连通,恰有两个顶点的度是奇数
      • 有向图:G连通,恰有两个顶点的出度与入度不相等,其中一个出度比入度多1,另一个入度比出度多1。

哈密顿图及哈密顿通路

  • 哈密顿图
    • 如果图G上有一条经过所有顶点的回路(不要求经过所有的边,也称作哈密顿回路)
    • 充分非必要条件:如果具有n个顶点的图G的每一对顶点度数之和不小于n,且n>=3
  • 哈密顿通路

    • 如果图G上有一条经过所有顶点的通路(非回路)
    • 充分非必要条件:如果具有n个顶点的图G的每一对顶点度数之和不小于n-1,那么G中有一条哈密顿通路

    哈密顿通路问题在上世纪七十年代被证明是“NP完全的”

图的连通性

  • u可达v
    • u=v或存在一条u到v的路径
  • 连通的无向图
    • 无向图中的任意两个顶点都是可达的
  • 连通的有向图
    • 有向图中的任意两个顶点都是互相可达的
  • 单向连通的有向图
    • 任意两个顶点至少从一个顶点到另一个顶点是可达的
  • 弱连通的有向图
    • 将有向图看作是无向图时是连通的
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值