LeetCode404:计算给定二叉树的所有左叶子之和。
首先要注意是判断左叶子,不是二叉树左侧节点,所以不要上来想着层序遍历。
因为题目中其实没有说清楚左叶子究竟是什么节点,那么我来给出左叶子的明确定义:如果左节点不为空,且左节 点没有左右孩子,那么这个节点就是左叶子
大家思考一下如下图中二叉树,左叶子之和究竟是多少?
其实是0,因为这棵树根本没有左叶子! 那么判断当前节点是不是左叶子是无法判断的,必须要通过节点的父节点来判断其左孩子是不是左叶子。
如果该节点的左节点不为空,该节点的左节点的左节点为空,该节点的左节点的右节点为空,则找到了一个左叶 子,判断代码如下:
if (node.left != null && node.left.left == null && node.left.right == null) {
左叶子节点处理逻辑
}
明确这个问题之后,算法也很自然的就出来了,深度搜索和广度都可以。
1.深度优先搜索
class Solution {
public int sumOfLeftLeaves(TreeNode root) {
return root != null ? dfs(root) : 0;
}
public int dfs(TreeNode node) {
int ans = 0;
if (node.left != null) {
ans += isLeafNode(node.left) ? node.left.val : dfs(node.left);
}
if (node.right != null && !isLeafNode(node.right)) {
ans += dfs(node.right);
}
return ans;
}
public boolean isLeafNode(TreeNode node) {
return node.left == null && node.right == null;
}
}
2.广度优先搜索
class Solution {
public int sumOfLeftLeaves(TreeNode root) {
if (root == null) {
return 0;
}
Queue<TreeNode> queue = new LinkedList<TreeNode>();
queue.offer(root);
int ans = 0;
while (!queue.isEmpty()) {
TreeNode node = queue.poll();
if (node.left != null) {
if (isLeafNode(node.left)) {
ans += node.left.val;
} else {
queue.offer(node.left);
}
}
if (node.right != null) {
if (!isLeafNode(node.right)) {
queue.offer(node.right);
}
}
}
return ans;
}
public boolean isLeafNode(TreeNode node) {
return node.left == null && node.right == null;
}
}