深度学习实践常用类及方法-(1)get_config用于获取配置信息

在实际的项目实践中,我们往往需要对参数进行频繁的调整,因此定义一个工具类来读取配置文件中的配置参数,这样当需要调参时,只需对配置文件中的参数进行调整即可。

selfconfig.ini文件如下:

[strings]
# Mode : train, test, serve
mode = train
seq_data = train_data/seq.data
train_data=train_data
#训练集原始文件
resource_data = train_data/xiaohuangji50w_nofenci.conv

model_data = model_data
[ints]
# vocabulary size 
# 	20,000 is a reasonable size
enc_vocab_size = 20000
dec_vocab_size = 20000
embedding_dim=128

# typical options : 128, 256, 512, 1024
layer_size = 256
# dataset size limit; typically none : no limit
max_train_data_size = 50000
batch_size = 128

get_config.py文件如下:


from configparser import SafeConfigParser

def get_config(config_file='selfconfig.ini'):
    parser = SafeConfigParser()
    parser.read(config_file)
    # get the ints, floats and strings
    _conf_ints = [ (key, int(value)) for key,value in parser.items('ints') ]
    #_conf_floats = [ (key, float(value)) for key,value in parser.items('floats') ]
    _conf_strings = [ (key, str(value)) for key,value in parser.items('strings') ]
    return dict(_conf_ints  + _conf_strings)

返回的是字典,在训练用的.py文件中直接导包,调用。

### 树莓派4B上的障碍物识别实现 #### 1. 环境准备 为了在树莓派4B上成功实现实时的障碍物识别功能,首先需要准备好开发环境。这包括但不限于操作系统的选择以及必要的软件包安装。 对于硬件部分,除了树莓派4B本身外,还需要额外配备摄像头模块用于图像采集工作。另外,如果计划采用红外传感器或其他类型的物理传感器来辅助检测,则需提前连接并测试这些设备的工作情况[^3]。 #### 2. 软件配置 针对软件方面,在启动项目之前应该先更新系统的Python版本至最新稳定版,并利用`pip`工具安装一些常用的机器学习框架和支持库,比如OpenCV、TensorFlow Lite或Paddle Lite等轻量级推理引擎,以便后续加载预训练好的神经网络模型来进行目标分类任务。此外,还可能需要用到特定的颜色感应器驱动程序,如通过命令 `pip install adafruit-circuitpython-tcs34725` 安装颜色传感支持库[^4]。 #### 3. 数据收集与标注 构建有效的障碍物识别系统离不开高质量的数据集作为支撑。可以通过手动拍摄不同角度下的物体图片或者录制视频片段的方式获取原始素材;之后借助标签工具对每一张样本进行细致入微的人工标记——即指定哪些区域属于前景中的“障碍”,而背景又是什么样的特征分布模式。值得注意的是,考虑到实际应用场景中可能会遇到的各种复杂因素影响(光照变化、天气状况),建议尽可能广泛地覆盖多种条件下来扩充数据源规模[^1]。 #### 4. 模型选择与优化 当拥有了足够的训练资料后,下一步就是挑选合适的深度学习架构应用于当前问题域内。鉴于边缘计算平台资源有限的特点,推荐优先考虑那些经过量化剪枝处理后的紧凑型卷积神经网络(CNN),它们能够在保证较高精度的同时显著降低运算开销。例如MobileNetV2就是一个不错的选择,其具备良好的泛化能力和较快的速度表现。当然也可以尝试其他更适合移动终端部署的小型化模型,像EfficientDet-D0这样的多尺度特征融合方案同样值得探索。 一旦决定了具体使用的算法类型,就需要对其进行针对性调优以适应具体的业务需求。此过程中涉及到超参数调整、正则项设置等多个环节的操作实践,目的是让最终得到的结果既满足性能指标又能兼顾功耗控制的要求。 #### 5. 应用集成与调试 最后一步便是将上述各个组件有机结合起来形成完整的解决方案。编写一段能够协调调度各子模块协同工作的主控脚本至关重要,它负责接收来自前端感知单元传回的信息流,经由中间层逻辑分析得出结论后再向执行机构发出指令信号。期间难免会碰到诸如同步机制不完善、通信链路不稳定等问题,这就要求开发者们耐心排查错误根源所在并通过合理的手段加以解决。 ```bash # 示例:安装依赖库 sudo apt-get update && sudo apt-get upgrade -y pip3 install opencv-python-headless paddlelite tflite-runtime numpy ``` ```python import cv2 from PIL import Image import paddlelite as lite def load_model(model_path): """加载已转换成Lite格式的目标检测模型""" config = lite.MobileConfig() model = lite.Predictor(config=config, model_file=model_path) return model def preprocess(image): """对输入图像做标准化预处理""" img = image.resize((input_width, input_height)) img_array = np.array(img).astype('float32') mean=[0.485, 0.456, 0.406] std=[0.229, 0.224, 0.225] norm_img_data=(img_array/255.-mean)/std transpose_img=norm_img_data.transpose(2,0,1)[np.newaxis,:].copy() return transpose_img if __name__ == '__main__': cap=cv2.VideoCapture(0) while True: ret, frame = cap.read() if not ret: break processed_frame = preprocess(Image.fromarray(cv2.cvtColor(frame,cv2.COLOR_BGR2RGB))) # 假设这里已经有一个初始化过的model对象 output = model.run([processed_frame]) # 对output结果进一步解析... cap.release() cv2.destroyAllWindows() ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

书生伯言

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值