关于函数极限
相对于数列极限,函数极限更加复杂,灵活多变。
函数极限主要考察计算,所用到的方法也有很多,主要涉及七种未定式的计算,下面是主要方法:
- 四则运算(最为基本)
- 夹逼准则(与数列极限类似)
- 洛必达(一定要0/0 ∞ /∞) 不足之处:可能会失效 如果最后没求得出来,可能是洛必达失效
- 泰勒公式(非常非常非常重要!!! 常见的一些函数的泰勒公式一定要记住,更重要的是这些公式的推广。)
- 归结原则:是将函数极限与数列极限联系起来的桥梁。 需要做的事情是找准xn。
- 等价无穷小(很多都是根据泰勒公式而来,一定要记住!!非常常用。条件是当x→0)
计算过程当中,尽量避免负号,遇到负号可以先换成正号,这样会方便很多。