函数极限<1>——函数极限

函数极限的基本概念与性质

函数极限的定义

定义1.1 函数极限

若函数 f ( x ) f\left ( x \right ) f(x)在去心邻域 U ˚ ( x 0 , δ ) \mathring{U}\left ( x_{0},\delta \right ) U˚(x0,δ)内有定义, ∀ ε > 0 \forall \varepsilon > 0 ε>0, ∃ δ > 0 \exists \delta >0 δ>0: ∀ x ( 0 < ∣ x − x 0 ∣ < δ ) \forall x\left ( 0<\left | x-x_{0} \right | <\delta \right ) x(0<xx0<δ), ∣ f ( x ) − A ∣ < ε \left | f\left ( x \right )-A \right |<\varepsilon f(x)A<ε,则称函数 f ( x ) f\left ( x \right ) f(x)以实数 A A A为极限,或函数 f ( x ) f\left ( x \right ) f(x)收敛于极限 A A A,符号化表述为 lim ⁡ x → x 0 f ( x ) = A \lim_{x\to x_{0} } f\left ( x \right ) =A limxx0f(x)=A f ( x ) → A ( x → x 0 ) f\left ( x \right )\to A ( x\to x_{0}) f(x)A(xx0)

函数极限的性质

定理1.1 函数极限的唯一性

lim ⁡ x → x 0 f ( x ) = A \lim_{x\to x_{0}} f\left ( x \right )=A limxx0f(x)=A, lim ⁡ x → x 0 f ( x ) = B \lim_{x\to x_{0}} f\left ( x \right )=B limxx0f(x)=B,则 A = B A=B A=B

由极限定义, ∀ ε > 0 \forall \varepsilon > 0 ε>0, ∃ δ 1 > 0 \exists \delta_{1} >0 δ1>0: ∀ x ( 0 < ∣ x − x 0 ∣ < δ 1 ) \forall x\left ( 0<\left | x-x_{0} \right | <\delta _{1} \right ) x(0<xx0<δ1), ∣ f ( x ) − A ∣ < ε 2 \left | f\left ( x \right )-A \right |<\frac{\varepsilon }{2} f(x)A<2ε,
同理, ∀ ε > 0 \forall \varepsilon > 0 ε>0, ∃ δ 2 > 0 \exists \delta_{2} >0 δ2>0: ∀ x ( 0 < ∣ x − x 0 ∣ < δ 2 ) \forall x\left ( 0<\left | x-x_{0} \right | <\delta _{2} \right ) x(0<xx0<δ2), ∣ f ( x ) − A ∣ < ε 2 \left | f\left ( x \right )-A \right |<\frac{\varepsilon }{2} f(x)A<2ε,
δ = min ⁡ { δ 1 , δ 2 } \delta =\min \left \{ \delta _{1},\delta _{2} \right \} δ=min{δ1,δ2},则以上结论均成立,根据三角不等式有:
∣ A − B ∣ < ∣ A − f ( x ) ∣ + ∣ f ( x ) − B ∣ < ε 2 + ε 2 = ε \left | A-B \right |< \left | A-f\left ( x \right ) \right |+\left |f\left ( x \right ) -B \right | < \frac{\varepsilon }{2}+\frac{\varepsilon }{2}=\varepsilon AB<Af(x)+f(x)B<2ε+2ε=ε
由于 ε \varepsilon ε是任意小的正实数,所以只有当 A = B A=B A=B时不等式才恒成立。

定理1.2 函数极限的局部保序性

A < B A<B A<B, lim ⁡ x → x 0 f ( x ) = A \lim_{x\to x_{0}} f\left ( x \right )=A limxx0f(x)=A, lim ⁡ x → x 0 g ( x ) = B \lim_{x\to x_{0}} g \left ( x \right )=B limxx0g(x)=B,则 ∀ ε > 0 \forall \varepsilon > 0 ε>0, ∃ δ > 0 \exists \delta >0 δ>0: ∀ x ( 0 < ∣ x − x 0 ∣ < δ ) \forall x\left ( 0<\left | x-x_{0} \right | <\delta \right ) x(0<xx0<δ), f ( x ) < g ( x ) f\left ( x \right ) <g\left ( x \right ) f(x)<g(x)

由极限定义, ∀ ε > 0 \forall \varepsilon > 0 ε>0, ∃ δ 1 > 0 \exists \delta_{1} >0 δ1>0: ∀ x ( 0 < ∣ x − x 0 ∣ < δ 1 ) \forall x\left ( 0<\left | x-x_{0} \right | <\delta _{1} \right ) x(0<xx0<δ1), ∣ f ( x ) − A ∣ < ε \left | f\left ( x \right )-A \right |<\varepsilon f(x)A<ε,
同理, ∀ ε > 0 \forall \varepsilon > 0 ε>0, ∃ δ 2 > 0 \exists \delta_{2} >0 δ2>0: ∀ x ( 0 < ∣ x − x 0 ∣ < δ 2 ) \forall x\left ( 0<\left | x-x_{0} \right | <\delta _{2} \right ) x(0<xx0<δ2), ∣ g ( x ) − B ∣ < ε \left | g \left ( x \right )-B \right |< \varepsilon g(x)B<ε,
δ = min ⁡ { δ 1 , δ 2 } \delta =\min \left \{ \delta _{1},\delta _{2} \right \} δ=min{δ1,δ2},则以上结论均成立,同时令 ε = B − A 2 \varepsilon = \frac{B-A}{2} ε=2BA,使得:
A − ε < f ( x ) < A + ε = B − ε < g ( x ) < B + ε A-\varepsilon <f\left ( x \right )<A+ \varepsilon =B-\varepsilon <g\left ( x \right )<B+\varepsilon Aε<f(x)<A+ε=Bε<g(x)<B+ε
f ( x ) < g ( x ) f\left ( x \right ) <g\left ( x \right ) f(x)<g(x)
其逆命题——函数极限的局部保不等号性也成立。

定理1.3 函数极限的局部有界性

lim ⁡ x → x 0 f ( x ) = A \lim_{x\to x_{0}} f\left ( x \right )=A limxx0f(x)=A, k ≤ A ≤ K k\le A\le K kAK,则 ∀ ε > 0 \forall \varepsilon > 0 ε>0, ∃ δ > 0 \exists \delta >0 δ>0: ∀ x ( 0 < ∣ x − x 0 ∣ < δ ) \forall x\left ( 0<\left | x-x_{0} \right | <\delta \right ) x(0<xx0<δ), ∃ 0 ≤ m ≤ M \exists 0\le m \le M ∃0mM: m ≤ f ( x ) ≤ M m\le f\left ( x \right ) \le M mf(x)M

若函数 f ( x ) f\left ( x \right ) f(x)在点 x 0 x_{0} x0处无定义,则令 k = g ( x ) k=g\left ( x \right ) k=g(x), K = h ( x ) K=h\left ( x \right ) K=h(x),即 g ( x ) ≤ A ≤ h ( x ) g\left ( x \right ) \le A\le h\left ( x \right ) g(x)Ah(x),
根据函数极限的局部保序性, ∀ ε > 0 \forall \varepsilon > 0 ε>0, ∃ δ > 0 \exists \delta >0 δ>0: ∀ x ( 0 < ∣ x − x 0 ∣ < δ ) \forall x\left ( 0<\left | x-x_{0} \right | <\delta \right ) x(0<xx0<δ), k = g ( x ) ≤ f ( x ) ≤ h ( x ) = K k=g\left ( x \right ) \le f\left ( x \right ) \le h\left ( x \right )=K k=g(x)f(x)h(x)=K
若函数 f ( x ) f\left ( x \right ) f(x)在点 x 0 x_{0} x0处有定义,则参照上文, m = min ⁡ { k , f ( x 0 ) } ≤ f ( x ) ≤ max ⁡ { K , f ( x 0 ) } = M m=\min \left \{ k,f\left ( x_{0} \right ) \right \}\le f\left ( x \right ) \le \max \left \{ K,f\left ( x_{0} \right ) \right \}=M m=min{k,f(x0)}f(x)max{K,f(x0)}=M

定理1.4 函数极限的迫敛性

lim ⁡ x → x 0 f ( x ) = lim ⁡ x → x 0 h ( x ) = A \lim_{x\to x_{0}}f \left ( x \right ) =\lim_{x\to x_{0}} h \left ( x \right )=A limxx0f(x)=limxx0h(x)=A,又有 f ( x ) ≤ g ( x ) ≤ h ( x ) f \left ( x \right ) \le g \left ( x \right ) \le h \left ( x \right ) f(x)g(x)h(x),则 lim ⁡ x → x 0 g ( x ) = A \lim_{x\to x_{0}} g \left ( x \right )=A limxx0g(x)=A

根据极限定义, ∀ ε > 0 \forall \varepsilon >0 ε>0, ∃ δ > 0 \exists \delta >0 δ>0: ∀ x ( 0 < ∣ x − x 0 ∣ < δ ) \forall x\left ( 0<\left | x-x_{0} \right | <\delta \right ) x(0<xx0<δ), ∣ f ( x ) − A ∣ < ε ⇒ A − ε < f ( x ) \left | f \left ( x \right ) -A \right | < \varepsilon \Rightarrow A-\varepsilon <f \left ( x \right ) f(x)A<εAε<f(x),
同理 ∀ ε > 0 \forall \varepsilon >0 ε>0, ∃ δ > 0 \exists \delta >0 δ>0: ∀ x ( 0 < ∣ x − x 0 ∣ < δ ) \forall x\left ( 0<\left | x-x_{0} \right | <\delta \right ) x(0<xx0<δ), ∣ h ( x ) − A ∣ < ε ⇒ h ( x ) < A + ε \left | h \left ( x \right ) -A \right | < \varepsilon \Rightarrow h \left ( x \right ) < A+\varepsilon h(x)A<εh(x)<A+ε
根据数列极限的有界性, A − ε < f ( x ) ≤ g ( x ) ≤ h ( x ) < A + ε A-\varepsilon <f \left ( x \right ) \le g \left ( x \right )\le h \left ( x \right ) < A+\varepsilon Aε<f(x)g(x)h(x)<A+ε, lim ⁡ x → x 0 g ( x ) = A \lim_{x\to x_{0}} g \left ( x \right )=A limxx0g(x)=A

定理1.5 函数极限的四则运算

lim ⁡ x → x 0 f ( x ) = A \lim_{x\to x_{0}} f\left ( x \right )=A limxx0f(x)=A, lim ⁡ x → x 0 g ( x ) = B \lim_{x\to x_{0}} g\left ( x \right )=B limxx0g(x)=B,以下结论成立:
(1) lim ⁡ x → x 0 ( f ( x ) ± g ( x ) ) = lim ⁡ x → x 0 f ( x ) ± lim ⁡ x → x 0 g ( x ) = A ± B \lim_{x\to x_{0}} \left ( f\left ( x \right ) \pm g\left ( x \right ) \right ) =\lim _{x\to x_{0} } f\left ( x \right ) \pm \lim _{x\to x_{0} } g\left ( x \right )=A\pm B limxx0(f(x)±g(x))=limxx0f(x)±limxx0g(x)=A±B
(2) lim ⁡ x → x 0 ( f ( x ) ⋅ g ( x ) ) = lim ⁡ x → x 0 f ( x ) ⋅ lim ⁡ x → x 0 g ( x ) = A ⋅ B \lim_{x\to x_{0}} \left ( f\left ( x \right ) \cdot g\left ( x \right ) \right ) =\lim _{x\to x_{0}} f\left ( x \right ) \cdot \lim _{x\to x_{0}} g\left ( x \right ) =A\cdot B limxx0(f(x)g(x))=limxx0f(x)limxx0g(x)=AB
(3) lim ⁡ x → x 0 ( f ( x ) g ( x ) ) = lim ⁡ x → x 0 f ( x ) lim ⁡ x → x 0 g ( x ) = A B ( B ≠ 0 ) \lim_{x\to x_{0}} \left ( \frac{f\left ( x \right ) }{g\left ( x \right ) } \right ) =\frac{\lim _{x\to x_{0}} f\left ( x \right )}{\lim _{x\to x_{0}} g\left ( x \right ) } =\frac{A}{B}(B\neq 0) limxx0(g(x)f(x))=limxx0g(x)limxx0f(x)=BA(B=0)

函数极限定义的扩充

定义1.2 单侧极限

若函数 f ( x ) f\left ( x \right ) f(x)在去心邻域 U ˚ ( x 0 − δ , x 0 ) \mathring{U}\left ( x_{0}-\delta,x_{0} \right ) U˚(x0δ,x0)内有定义, ∀ ε > 0 \forall \varepsilon > 0 ε>0, ∃ δ > 0 \exists \delta >0 δ>0: ∀ x ( − δ < x − x 0 < 0 ) \forall x\left ( -\delta <x-x_{0} <0 \right ) x(δ<xx0<0), ∣ f ( x ) − A ∣ < ε \left | f\left ( x \right )-A \right |<\varepsilon f(x)A<ε,则称函数 f ( x ) f\left ( x \right ) f(x)以实数 A A A为左极限,或函数 f ( x ) f\left ( x \right ) f(x)收敛于左极限 A A A,符号化表述为 lim ⁡ x → x 0 − f ( x ) = A \lim_{x\to x^{-} _{0 } } f\left ( x \right ) =A limxx0f(x)=A f ( x ) → A ( x → x 0 − ) f\left ( x \right )\to A ( x\to x_{0}^{-}) f(x)A(xx0)
若函数 f ( x ) f\left ( x \right ) f(x)在去心邻域 U ˚ ( x 0 , x 0 + δ ) \mathring{U}\left ( x_{0},x_{0}+\delta \right ) U˚(x0,x0+δ)内有定义, ∀ ε > 0 \forall \varepsilon > 0 ε>0, ∃ δ > 0 \exists \delta >0 δ>0: ∀ x ( 0 < x − x 0 < δ ) \forall x\left ( 0 <x-x_{0} <\delta \right ) x(0<xx0<δ), ∣ f ( x ) − A ∣ < ε \left | f\left ( x \right )-A \right |<\varepsilon f(x)A<ε,则称函数 f ( x ) f\left ( x \right ) f(x)以实数 A A A为右极限,或函数 f ( x ) f\left ( x \right ) f(x)收敛于右极限 A A A,符号化表述为 lim ⁡ x → x 0 + f ( x ) = A \lim_{x\to x^{+} _{0 } } f\left ( x \right ) =A limxx0+f(x)=A f ( x ) → A ( x → x 0 + ) f\left ( x \right )\to A ( x\to x_{0}^{+}) f(x)A(xx0+)
函数极限存在当且仅当左右极限存在且相当。

变化趋势的扩充

函数的自变量可有以下的趋向:
(1) x → x 0 + x\to x_{0}^{+} xx0+
(2) x → x 0 − x\to x_{0}^{-} xx0
(3) x → x 0 x\to x_{0} xx0
(4) x → + ∞ x\to +\infty x+
(5) x → − ∞ x\to -\infty x
(6) x → ∞ x\to \infty x

极限取值的扩充

函数的极限可有以下的取值:
(1) A A A有穷量
(2) A = + ∞ A=+\infty A=+
(3) A = − ∞ A=-\infty A=
(4) A = ∞ A=\infty A=
极限趋向于无穷大时的定义可参考数列极限中无穷大量的定义,本系列专栏中极限收敛仅限于极限存在且有限的情形,而本系列专栏中极限存在可进一步扩充实数域,统一将无穷大和有穷实数接纳为有意义的极限,一般情况下根据语境和实际应用判断是否应将无穷大也视为极限存在。

函数极限的Cauchy收敛原理

Cauchy收敛原理

f ( x ) f(x) f(x)收敛(极限存在且有限)当且仅当 ∀ ε > 0 \forall \varepsilon >0 ε>0, ∃ X ∈ R \exists X\in \mathbb{R} XR: ∀ x ′ \forall x^{\prime } x, x ′ ′ > X x^{\prime \prime }>X x′′>X, ∣ f ( x ′ ) − f ( x ′ ′ ) ∣ < ε \left | f\left ( x^{\prime } \right ) -f\left ( x^{\prime \prime } \right ) \right |<\varepsilon f(x)f(x′′)<ε

<1>必要性
由函数极限的定义, ∀ ε > 0 \forall \varepsilon > 0 ε>0, ∃ X \exists X X: ∀ x ′ > X \forall x^{\prime }>X x>X, ∣ f ( x ′ ) − A ∣ < ε 2 \left | f\left ( x^{\prime } \right ) -A \right |<\frac{\varepsilon}{2} f(x)A<2ε,
同理, ∀ ε > 0 \forall \varepsilon >0 ε>0, ∃ X \exists X X: ∀ x ′ ′ > X \forall x^{\prime\prime }>X x′′>X, ∣ f ( x ′ ′ ) − A ∣ < ε 2 \left | f\left ( x^{\prime \prime } \right ) -A \right |<\frac{\varepsilon}{2} f(x′′)A<2ε,
根据三角不等式:
∣ f ( x ′ ) − A ∣ + ∣ A − f ( x ′ ′ ) ∣ = ∣ f ( x ′ ) − f ( x ′ ′ ) ∣ < ε 2 + ε 2 = ε \left | f\left ( x^{\prime } \right ) -A \right |+\left | A-f\left ( x^{\prime \prime } \right ) \right |=\left | f\left ( x^{\prime } \right )-f\left ( x^{\prime \prime } \right ) \right |<\frac{\varepsilon }{2}+\frac{\varepsilon }{2}=\varepsilon f(x)A+Af(x′′)=f(x)f(x′′)<2ε+2ε=ε
<2>充分性
取正无穷大量数列 { x n } \left \{ x_{n} \right \} {xn}, ∀ ε > 0 \forall \varepsilon >0 ε>0, ∃ X \exists X X, ∀ x m \forall x_{m} xm, x n > X x_{n} >X xn>X, ∣ f ( x n ) − f ( x m ) ∣ < ε \left | f\left ( x_{n} \right ) -f\left ( x_{m} \right ) \right |<\varepsilon f(xn)f(xm)<ε,
根据数列极限的Cauchy收敛原理,数列 { f ( x n ) } \left \{ f\left ( x_{n} \right ) \right \} {f(xn)}收敛,
根据Heine定理,函数 f ( x ) f \left ( x \right ) f(x)也收敛。

  • 18
    点赞
  • 19
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值