一.与极限有关的概念题目
这道题想要告诉我们的是做题不要太死板,不是一定得后面是艾欧斯龙才可以,只要<=后面是一个在前面的范围下面,趋近于0的数字就都可以。只要这样,那定义就是最精确的充分必要条件!
这道题运用了极限的保号性,如下图所示
这道题目,当加上绝对值的时候,|an|=|a|>0
所以|a|>|a|/2,|an|也是;也就是说|an|会大于比a小的数,但是这样其实不严谨,不然的话c就没办法排除了。应该怎么想呢?an会大于任意(a-常数),后面一定要减的是常数,像是A选项,减的就是|a|/2。但是c选项,减的是1/n并非常数,所以不行,因为1/n也是无穷小,无穷小的阶数都不知道无法比较的!
二.与无界与无穷大相关的概念题
无穷大可以推出无界,但是无界推不出无穷大!
Things that tend to infinity are unbounded, but unbounded things do not always tend to infinity. Tending to infinity means more: it means it is both unbounded and at the same time doesn’t “go back down”.也就是说趋向于无穷大其实是一个单边的概念,他不能返回到0!也就是不能震荡,他的绝对值要不断增大!
这是一个最好的例子,趋向定点的无界震荡
D错在limf(x)->0,f(x)是有可能等于0的,但是分母不能等于0.(这里有一个易错点:就是lim(x->a)f(x)->b中x不能等于a,但是f(x)可以等于b,这是本质的区别要注意)
三.与单调有界准则有关的概念题
一个数列有界并且单调就能说明这个数列是收敛的。
但是这道题目要注意,他说的是{sn}有界,所以说应该能推出的是{sn}收敛,而不是{an}。那么an收敛嘛?an = sn-sn-1,很庆幸的是,sn和sn-1在n->∞时候极限都为同一个值,所以an在n->∞的时候an->0,所以an是收敛的。
但是反过来我们要看到,当an收敛的时候,sn是不能推出有界的。比如我们可以举反例,一般举反例就是要特殊一点去举。比如只需要举出常函数就可以很明显得看出sn无界了。
这道题目也是要我们巧妙的应用反例的方法。
A,非常具有迷惑性的选项。此处的反例是xn为来回震荡地收敛于f(x)的跳跃间断点.f(xn)的函数图像如上图右上角所示,这时候f(xn)在偶数的时候趋向于1,在奇数的时候趋向于-1.
B.如果xn单调,那么f(xn)也单调,这是函数的性质,同增异减。又因为f(x)在全部区域内都有界,所以f(xn)一定也有界,单调有界一定收敛。
C.f(xn)收敛,xn收敛?不,我们可以找到反例。怎么找呢?我们是不是要找到一个使得f(xn)收敛的不收敛的xn,使f(xn)收敛我们只需要找到单调的xn就可以,所以我们要找的反例就是单调但是不收敛的函数,我们很自然地就能想到n了。
D.C的例子同样适用于D
四.与夹逼准则有关的概念题
这道题目真的很容易错!!这道题目不确定是因为cn和an不一定存在,无穷大-无穷大也有可能等于0的,所以有可能bn是夹在两个无穷大中间,这时候bn就不存在!
区别一下这道补充的题目。这道补充的题目已经暗含bn存在了是a,那是不是就有一种感觉,就是yn和xn就不能是无穷大了,不然不可能夹住bn,所以要能夹住bn,则yn和xn也要是a。
当然这样是不严谨的,更严谨的应该是我上面那样,看到xn和yn被b隔开,怎么样才能让他们重新到一起,那是不是应该用减法?用减法之后就夹出了a-xn的极限,然后xn的极限也就出来了,用推广的四则运算,那么yn的极限也出来了。
推广的四则运算就是,如果lim(a+b)中a,b有一个极限能存在,那就可以提取出来。
五.与四则运算有关的概念题
当看到相乘,并且需要举反例,一定要记得0!!因为一切东西都可以零掉
- f(x)g(x)不一定不存在,极端反例,当f(x) ==0时候。
- 很明显,不存在+存在=不存在
- 不存在×不存在=?好像都是不存在,但是联系我们高亮的那句话,能不能找到两个能够相乘后互相零掉的句子?显然是可以的,只要他们交接地为0就可以。
- 4与2是一样的道理
不过要注意的是不存在+不存在 = ?但是如果我们知道两个不存在的类型都是同个方向的无穷,那我们是可以判断应该是无穷!!!要具体问题具体分析哦!
这道题目和上面那道题目其实是很像的。
A感觉很离谱地错了吧,再不济也应该是一个发散一个收敛才能把发散拉回来0
B的话,值得思考一下,其实只要和我上道题目讲的那样让xn和yn相继为0,是不是就完美地解决了?
C的话,想到特例,则xn==0
D其实默认了xn不能等于0,而且xn是无穷大,无穷大必须乘以无穷小才可能拉回0.
以后见到an,bn与(an+bn),(an-bn)结合起来的题目,一定要注意将an和bn拆开,拆开形式如下。
然后我们就可以开始讨论了。
A不存在 = 不存在 +?
是不是不确定,因为你移项,不存在➖不存在都为不确定,
C不存在 = 存在+?一定是不存在吧!因为存在+存在=存在
精彩的连续性!!!
这道题目终极结论先下:只有连续和连续复合才是连续,其他种组合都是不确定
A连续与连续复合连续,这个很好想
B内连续,外不连续,来记住反例,当内层g(x)=0时,复合函数为f(0),常函数一定连续;当内层g(x) = x时候,复合函数为f(x)也就是外层函数本身,则一定是不连续的。
C内不连续,外连续,来记住反例,当外层f(x)=0时候,复合函数==0,所以常函数连续,当外层为x的时候f(g(x))=g(x),内不连续,所以函数不连续。
综合BC,也就是这种题目就是说,哪一层连续,你就令该层为0orx,你就能得到复合函数与常函数(连续)或者另一层函数(不连续)的关系
D问题来了,不连续×不连续应该怎么想呢?
回归定义。
我们假设g(x)都在x=0处间断。
我们要求lim(x->0)f(g(x)) ?= f(g(0))
我们假设g(x) =1(x≠0); =0(x=0)
所以这时候f(g(0)) = f(0),f(g(x)) = f(1),
所以问题就变成了f(0)是否=f(1),所以都是有可能的
这里有个比较好的例子也就是这个,这样f(g(x))是恒等于1的!所以是连续,不过要找不连续也就更简单了,随便写写就好!!