红外与可见光图像配准算法--MATLAB版

本文提出了一种基于斜率一致性的红外与可见光图像配准方法。通过数学形态学提取边缘,使用SURF算法匹配特征点,利用斜率一致性筛选正确匹配,最终应用最小二乘法求仿射变换实现高精度配准。
摘要由CSDN通过智能技术生成

2016-07-08更新

总体方法简述:针对电气设备同一场景的红外与可见光图像间一致特征难以提取和匹配的问题,提出了一种基于斜率一致性的配准方法。首先通过数学形态学方法分别提取红外与可见光图像的边缘,得到粗边缘图像;然后通过SURF算法提取两幅边缘图像的特征点,根据正确的匹配点对之间斜率一致性的先验知识,进行特征点匹配;最后通过最小二乘法求得仿射变换模型参数并实现两幅图像的配准。实验结果表明,该方法有效提高了匹配点对的正确率,能够对电气设备红外和可见光图像实现高精度的配准。

实验图:


% Example 3, Affine registration
% Load images
clc;clear all;
close all;
%%%发现只有匹配点对遍布在图像中,匹配效果才会变好
I11=(imread('qa1.bmp'
评论 38
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值