关于卷积

卷积

卷积核大小(Kernel Size):定义了卷积操作的感受野。在二维卷积中,通常设置为3,即卷积核大小为3×3。

步幅(Stride):定义了卷积核遍历图像时的步幅大小。其默认值通常设置为1,也可将步幅设置为2后对图像进行下采样,这种方式与最大池化类似。

边界扩充(Padding):定义了网络层处理样本边界的方式。当卷积核大于1且不进行边界扩充,输出尺寸将相应缩小;当卷积核以标准方式进行边界扩充,则输出数据的空间尺寸将与输入相等。

输入与输出通道(Channels):构建卷积层时需定义输入通道I,并由此确定输出通道O。这样,可算出每个网络层的参数量为I×O×K,其中K为卷积核的参数个数。例,某个网络层有64个大小为3×3的卷积核,则对应K值为 3×3 =9。

动画演示见:https://github.com/vdumoulin/conv_arithmetic


caffe中的layer:

https://www.cnblogs.com/yinheyi/p/6070213.html

convolution层:

layer的类型为:Convolution.,它有很参数,具体可以看caffe.proto里的message ConvolutionParam{}的定义.

num_output :输出的 feature map的个数啦,是否有偏置项啦,是否有把图像的边缘补充/卷积核的大小./步长/权值如何填充/偏置如何填充等.

看一个例子:

复制代码
layer {
  name: "conv1"
  type: "Convolution"
  bottom: "data"
  top: "conv1"
  # learning rate and decay multipliers for the filters
  param { lr_mult: 1 decay_mult: 1 }
  # learning rate and decay multipliers for the biases
  param { lr_mult: 2 decay_mult: 0 }
  convolution_param {
    num_output: 96     # learn 96 filters
    kernel_size: 11    # each filter is 11x11
    stride: 4          # step 4 pixels between each filter application
    weight_filler {
      type: "gaussian" # initialize the filters from a Gaussian
      std: 0.01        # distribution with stdev 0.01 (default mean: 0)
    }
    bias_filler {
      type: "constant" # initialize the biases to zero (0)
      value: 0
    }
  }
}
复制代码

pooling层:类型为:Pooling

这一层也有很多参数选择, 如pooling的核的大小/步长/pad(即上面的是否为边界加一些默认的值), 还有pooling的方法:现在有max/ average/stochastic三个方法.,具体看一下caffe.proto里的定义.

复制代码
layer {
  name: "pool1"
  type: "Pooling"
  bottom: "conv1"
  top: "pool1"
  pooling_param {
    pool: MAX
    kernel_size: 3 # pool over a 3x3 region
    stride: 2      # step two pixels (in the bottom blob) between pooling regions
  }
}
复制代码

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值