关于卷积

转载 2018年04月15日 22:43:01

卷积

卷积核大小(Kernel Size):定义了卷积操作的感受野。在二维卷积中,通常设置为3,即卷积核大小为3×3。

步幅(Stride):定义了卷积核遍历图像时的步幅大小。其默认值通常设置为1,也可将步幅设置为2后对图像进行下采样,这种方式与最大池化类似。

边界扩充(Padding):定义了网络层处理样本边界的方式。当卷积核大于1且不进行边界扩充,输出尺寸将相应缩小;当卷积核以标准方式进行边界扩充,则输出数据的空间尺寸将与输入相等。

输入与输出通道(Channels):构建卷积层时需定义输入通道I,并由此确定输出通道O。这样,可算出每个网络层的参数量为I×O×K,其中K为卷积核的参数个数。例,某个网络层有64个大小为3×3的卷积核,则对应K值为 3×3 =9。

动画演示见:https://github.com/vdumoulin/conv_arithmetic


caffe中的layer:

https://www.cnblogs.com/yinheyi/p/6070213.html

convolution层:

layer的类型为:Convolution.,它有很参数,具体可以看caffe.proto里的message ConvolutionParam{}的定义.

num_output :输出的 feature map的个数啦,是否有偏置项啦,是否有把图像的边缘补充/卷积核的大小./步长/权值如何填充/偏置如何填充等.

看一个例子:

复制代码
layer {
  name: "conv1"
  type: "Convolution"
  bottom: "data"
  top: "conv1"
  # learning rate and decay multipliers for the filters
  param { lr_mult: 1 decay_mult: 1 }
  # learning rate and decay multipliers for the biases
  param { lr_mult: 2 decay_mult: 0 }
  convolution_param {
    num_output: 96     # learn 96 filters
    kernel_size: 11    # each filter is 11x11
    stride: 4          # step 4 pixels between each filter application
    weight_filler {
      type: "gaussian" # initialize the filters from a Gaussian
      std: 0.01        # distribution with stdev 0.01 (default mean: 0)
    }
    bias_filler {
      type: "constant" # initialize the biases to zero (0)
      value: 0
    }
  }
}
复制代码

pooling层:类型为:Pooling

这一层也有很多参数选择, 如pooling的核的大小/步长/pad(即上面的是否为边界加一些默认的值), 还有pooling的方法:现在有max/ average/stochastic三个方法.,具体看一下caffe.proto里的定义.

复制代码
layer {
  name: "pool1"
  type: "Pooling"
  bottom: "conv1"
  top: "pool1"
  pooling_param {
    pool: MAX
    kernel_size: 3 # pool over a 3x3 region
    stride: 2      # step two pixels (in the bottom blob) between pooling regions
  }
}
复制代码

对卷积的生动理解

我不生产自己不熟悉的内容,我只是陌生内容的搬运工!转自知乎     先来三个小故事:     故事一:【转自人人】无意在网上看到这篇《大牛讲解信号与系统以及数字信号处理》     故事二:卷积的...
  • jzwong
  • jzwong
  • 2015-08-11 16:42:35
  • 992

卷积神经网络入门详解

  本文主要内容为 CS231n 课程的学习笔记,主要参考 学习视频 和对应的 课程笔记翻译 ,感谢各位前辈对于深度学习的辛苦付出。在这里我主要记录下自己觉得重要的内容以及一些相关的想法,希望能...
  • dugudaibo
  • dugudaibo
  • 2017-11-08 15:52:14
  • 1344

通俗易懂的解释卷积

著作权归作者所有。 商业转载请联系作者获得授权,非商业转载请注明出处。 作者:张俊博 链接:https://www.zhihu.com/question/22298352/answer/3426745...
  • han____shuai
  • han____shuai
  • 2016-02-23 13:42:51
  • 953

关于《OPENCL异构并行计算》中卷积优化的分析

《OPENCL异构并行计算》中讲了如何利用OPENCL进行卷积运算,并给出了使用局部存储器优化的例子,这里对其进行简单分析...
  • qq_20028731
  • qq_20028731
  • 2017-04-16 17:13:39
  • 724

深度学习FPGA实现基础知识14(如何理解“卷积”运算)

需求说明:深度学习FPGA实现知识储备 来自:http://blog.sina.com.cn/s/blog_80556b34010186hf.html 正文: 卷积这个东东是“信号与系统”中论述...
  • Times_poem
  • Times_poem
  • 2016-06-13 09:15:56
  • 2601

FWT 详解 知识点

前言(扯淡,可以跳过): 其实去年清华集训之后就想写这篇文章了……但是写了一会发现有点说不明白话……于是受限于语文水平一直没有写。前几天给人当面讲了一遍,感觉大概可以BB明白些了…… picks的博...
  • neither_nor
  • neither_nor
  • 2017-03-04 18:44:32
  • 2508

卷积的计算的conv2

最近在看到一些卷积的东西,发现使用相同的卷积核卷积出来的图像的尺寸不同,就从网上查找了一下发现了问题,记录一下。 关于conv2函数的计算过程 假设有两个矩阵a,b,a的大小是ma行na列,b的大小是...
  • Losteng
  • Losteng
  • 2016-03-28 10:58:38
  • 1843

卷积定理专项证明 (内含推导过程)

  • 2009年09月15日 13:46
  • 263KB
  • 下载

卷积 卷积 卷积 卷积

  • 2008年09月06日 22:07
  • 354KB
  • 下载

计算两个序列的线性卷积程序

  • 2010年06月14日 13:45
  • 1KB
  • 下载
收藏助手
不良信息举报
您举报文章:关于卷积
举报原因:
原因补充:

(最多只允许输入30个字)