利用机器学习和规则引擎实现实时交易风险预警

以下是一个基于Python的银行操作风险合规检测系统的示例代码,演示如何利用机器学习和规则引擎实现实时交易风险预警

 

python

import pandas as pd
import numpy as np
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_report, roc_auc_score
from sklearn.preprocessing import StandardScaler, OneHotEncoder
from sklearn.compose import ColumnTransformer
from sklearn.pipeline import Pipeline
from imblearn.over_sampling import SMOTE
import joblib
from flask import Flask, request, jsonify
import json
from datetime import datetime

# 1. 加载示例数据(需替换为真实交易数据集)
data = pd.read_csv("bank_transactions.csv")
# 数据包含字段示例:
# transaction_id, customer_id, amount, transaction_time, 
# merchant_category_code, ip_address, device_info, 
# location, risk_label (0-正常, 1-欺诈)

# 2. 数据预处理与特征工程
def preprocess_data(df):
    # 处理时间特征
    df['transaction_time'] = pd.to_datetime(df['transaction_time'])
    df['hour'] = df['transaction_time'].dt.hour
    df['day_of_week'] = df['transaction_time'].dt.dayofweek
    
    # 异常值处理
    df['amount'] = np.log(df['amount'] + 1)  # 对数变换处理右偏分布
    
    # 设备指纹编码
    df['device_info'] = df['device_info'].apply(lambda x: hashlib.sha256(x.encode()).hexdigest()[:16])
    
    # 地理位置风险评分
    with open('high_risk_locations
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

银行金融科技

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值