以下是一个基于Python的银行操作风险合规检测系统的示例代码,演示如何利用机器学习和规则引擎实现实时交易风险预警:
python
import pandas as pd
import numpy as np
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_report, roc_auc_score
from sklearn.preprocessing import StandardScaler, OneHotEncoder
from sklearn.compose import ColumnTransformer
from sklearn.pipeline import Pipeline
from imblearn.over_sampling import SMOTE
import joblib
from flask import Flask, request, jsonify
import json
from datetime import datetime
# 1. 加载示例数据(需替换为真实交易数据集)
data = pd.read_csv("bank_transactions.csv")
# 数据包含字段示例:
# transaction_id, customer_id, amount, transaction_time,
# merchant_category_code, ip_address, device_info,
# location, risk_label (0-正常, 1-欺诈)
# 2. 数据预处理与特征工程
def preprocess_data(df):
# 处理时间特征
df['transaction_time'] = pd.to_datetime(df['transaction_time'])
df['hour'] = df['transaction_time'].dt.hour
df['day_of_week'] = df['transaction_time'].dt.dayofweek
# 异常值处理
df['amount'] = np.log(df['amount'] + 1) # 对数变换处理右偏分布
# 设备指纹编码
df['device_info'] = df['device_info'].apply(lambda x: hashlib.sha256(x.encode()).hexdigest()[:16])
# 地理位置风险评分
with open('high_risk_locations