2025年DeepSeek技术全景解析

本文来自“2025年DeepSeek技术全景解析”,回顾其发展历史,2024年1月,发布第一版大模型—-DeepSeek LLM,这个版本使用传统的Transformer架构,但在训练方面,已经明显体现出DeepSeek团队通过不断优化训练策略,达到节约成本,提高效率的思想,这点也在后续的模型迭代中被发扬光大。

2024年5月,DeepSeek-V2发布,从这一代开始,DeepSeek模型开始使用混合专家(MoE)架构,这是传统Transformer架构的一种改进和扩展,该架构使DeepSeek模型能以更低的计算成本进行更复杂的推理,极大提升了模型的性能。

2024年12月,DeepSeek-V3上线并开源,V3版本对MoE架构进行了进一步优化,在维持低训练成本的同时,稳定性与多方面性能表现都达到了与领先闭源模型相当的水平。

2025年1月,DeepSeek-R1正式发布,R1模型的推理能力得到极大加强,与OpenAl-o1模型不相上下,且推理过程完全透明,因此在全球范围备受关注。从低成本的DeepSeekV2,到超低价格的DeepSeek-V3,再到引起世界广泛关注的DeepSeek-R1,DeepSeek的成功主要依赖于DeepSeek自身深厚的技术积累和持续的技术创新突破。

图片

图片

图片

图片

图片

图片

图片

图片

图片

图片

图片

图片

图片

图片

图片

图片

图片

图片

图片

图片

图片

图片

图片

图片

图片

图片

图片

图片

图片

图片

图片

图片

图片

图片

图片

图片

图片

图片

图片

图片

图片

图片

图片

图片

图片

图片

图片

来源:智研咨询

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

银行金融科技

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值