DNN反向传播矢量化理解

下面只是方便理解,在神经网络的实现中,假定输入 X X ,每一行是一个样本,即形状可以表示为 n×d1 n × d 1 , 其经过线性层得到 Y Y ,其每一行是一个样本,则形状可以表示为 n×d2 n × d 2 ,则用公式可以表示为:

Y=XW Y = X ∗ W

形状为:
n×d2=n×d1d1×d2 n × d 2 = n × d 1 ∗ d 1 × d 2

理解反向传播的矢量化:

这里写图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值