由一维“醉酒的小鸟”引发的一些思考

一维格点上随机游走的粒子,它最终返回出发点的概率为 100 % 100\% 100%

刚开始,在五三的知识拓展部分看到这东西,我觉得十分显然,证明有手就行,结果证了半天才证出来
f n f_n fn表示,从 n n n开始走,无限步后,走回 0 0 0的概率
我们可以得到:
f 1 = 1 + f 2 2 f_1=\frac{1+f_2}{2} f1=21+f2

f 2 = f 1 + f 3 2 f_2=\frac{f_1+f_3}{2} f2=2f1+f3

f 3 = f 2 + f 4 2 f_3=\frac{f_2+f_4}{2} f3=2f2+f4
. . . ... ...
那么
f 2 = 2 f 1 − 1 f_2=2f_1-1 f2=2f11

f 3 = 3 f 1 − 2 f_3=3f_1-2 f3=3f12
. . . ... ...
f n = n f 1 − n + 1 f_n=nf_1-n+1 fn=nf1n+1
∵ f n > 0 ∵f_n>0 fn>0
∴ f 1 > n − 1 n ∴f_1>\frac{n-1}{n} f1>nn1
n n n趋近正无穷时, f 1 = 1 f_1=1 f1=1
所以 f 0 = 1 f_0=1 f0=1
Q . E . D Q.E.D Q.E.D

我刚开始还尝试了另外一种证法
考虑如何才能令第 2 n 2n 2n步恰好走回 0 0 0
我们可以先 + 1 +1 +1,最后 − 1 -1 1
中间 2 n − 2 2n-2 2n2步强制 2... i 2...i 2...i的前缀和 ≥ 0 ≥0 0
这恰好就是 C a t a l a n Catalan Catalan
2 n 2n 2n步恰好走回 0 0 0的概率为 ( 2 n − 2 ) ! ( n − 1 ) ! n ! ⋅ 2 ⋅ 2 − 2 n \frac{(2n-2)!}{(n-1)!n!}\cdot2\cdot2^{-2n} (n1)!n!(2n2)!222n
中间那个 × 2 ×2 ×2是第一步也可以是-1,整个反一下就好了
那么:
∑ n = 1 + ∞ ( 2 n − 2 ) ! ( n − 1 ) ! n ! ⋅ 2 ⋅ 2 − 2 n = 1 \sum_{n=1}^{+∞}\frac{(2n-2)!}{(n-1)!n!}\cdot2\cdot2^{-2n}=1 n=1+(n1)!n!(2n2)!222n=1
化简得:
∑ n = 1 + ∞ ( 2 n − 3 ) ! ! ( 2 n ) ! ! = 1 \sum_{n=1}^{+∞}\frac{(2n-3)!!}{(2n)!!}=1 n=1+(2n)!!(2n3)!!=1(这里 ( − 1 ) ! ! (-1)!! (1)!!我定义成了 1 1 1,本来应该是 0 0 0,然后计算方法也是不严格的,后面每一项都记作前一项乘某个数,所以都成了个二分之一。总之这行可以略过)
正确的表述应该是
∑ n = 1 + ∞ ( 2 n − 1 ) ! ! ( 2 n + 2 ) ! ! = 1 \sum_{n=1}^{+∞}\frac{(2n-1)!!}{(2n+2)!!}=1 n=1+(2n+2)!!(2n1)!!=1
经打表验证,成立
并且发现,这东西看起来有个阶乘,实际上收敛速度特别特别慢
到第 10000 10000 10000项,总和才 0.996 0.996 0.996
我是从来没见过收敛的结果是个有意思的数的情况下,收敛速度这么慢的东西

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值