喝醉的酒鬼总能找到回家的路,喝醉的小鸟则可能永远也回不了家

查了一下,高维情形的证明应该涉及到 Random walk 的一些知识,维基百科里就写得还不错:Random_walk


当然,如果只是简单的一维情形的话,可以只用相关的推广意义下的卡特兰数的公式进行证明。

令推广的卡特兰数为

则,先从原点0出发,第一步无论向左还是向右先走一步。然后就是往该方向的卡特兰数了。

设又走了2n步,则有可能其中往回走了0-n步的推广的卡特兰数情形。

所以最后回不去原点的概率为

然后就是n趋向于无穷的情形了。(有新的问题可以想了,二项式系数的分布在趋向于无穷之后会是怎样的?其中二项式系数最大值与总和的比例是多少?)




总有印象曾经做出过高维情形的公式,但现在就是想不起来了,所以把自己的思考过程及时记录下来还是非常重要的!


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值