巴塞尔问题:
所有平方数的倒数的和是多少?
1
1
2
+
1
2
2
+
1
3
2
+
1
4
2
+
.
.
.
+
1
n
2
=
?
\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}=?
121+221+321+421+...+n21=?(n趋近于正无穷)
推导开始:
//分割线内先推导一个麦克劳林级数
假如有任意一个多项式函数f(x),将所有同次项合并后,我们都可以用以下形式给出:
f ( x ) = A + B x + C x 2 + D x 3 + E x 4 + F x 5 + G x 6 + . . . f(x)=A+Bx+Cx^2+Dx^3+Ex^4+Fx^5+Gx^6+... f(x)=A+Bx+Cx2+Dx3+Ex4+Fx5+Gx6+... 其中 A,B,C,D,…以及x都是实数,省略号之后的项的次数向无穷大整数递增。
那么显而易见
f
(
0
)
=
A
f(0)=A
f(0)=A 我们可以将它改写为
A
=
f
(
0
)
A=f(0)
A=f(0)
根据导数公式
f
(
x
)
=
x
n
,
f
′
(
x
)
=
n
x
n
−
1
f(x)=x^n,f'(x)=nx^{n-1}
f(x)=xn,f′(x)=nxn−1
我们可以得出
f
′
(
x
)
=
B
+
2
C
x
+
3
D
x
2
+
4
E
x
3
+
5
F
x
4
+
6
G
x
5
+
.
.
.
f'(x)=B+2Cx+3Dx^2 + 4Ex^3+5Fx^4+6Gx^5+...
f′(x)=B+2Cx+3Dx2+4Ex3+5Fx4+6Gx5+...
所以
f
′
(
0
)
=
B
f'(0)=B
f′(0)=B 我们可以将它改写为
B
=
f
′
(
0
)
1
!
B=\frac{f'(0)}{1!}
B=1!f′(0)
该函数从1到n阶的导数我们都可以像上面这样有规律的推下去:
f
′
′
(
x
)
=
2
C
+
6
D
x
+
12
E
x
2
+
20
F
x
3
+
30
G
x
4
+
.
.
.
f''(x)=2C+6Dx+12Ex^2+20Fx^3+30Gx^4+...
f′′(x)=2C+6Dx+12Ex2+20Fx3+30Gx4+...
f
′
′
(
0
)
=
2
C
f''(0)=2C
f′′(0)=2C 我们可以将它改写为
C
=
f
′
′
(
0
)
2
!
C=\frac{f''(0)}{2!}
C=2!f′′(0)
f
′
′
′
(
x
)
=
6
D
+
24
E
x
+
60
F
x
2
+
120
G
x
3
+
.
.
.
f'''(x)=6D+24Ex+60Fx^2+120Gx^3+...
f′′′(x)=6D+24Ex+60Fx2+120Gx3+...
f
′
′
′
(
0
)
=
6
D
f'''(0)=6D
f′′′(0)=6D 我们可以将它改写为
D
=
f
′
′
′
(
0
)
3
!
D=\frac{f'''(0)}{3!}
D=3!f′′′(0)
…
以上,将改写后的系数A,B,C,D,…带回到f(x)多项式函数最上面的原型,可以得出:
f
(
x
)
=
f
(
0
)
+
x
f
′
(
0
)
1
!
+
x
2
f
′
′
(
0
)
2
!
+
x
3
f
′
′
′
(
0
)
3
!
+
x
4
f
′
′
′
′
(
0
)
4
!
+
.
.
.
f(x)=f(0)+x\frac{f'(0)}{1!}+x^2\frac{f''(0)}{2!}+x^3\frac{f'''(0)}{3!}+x^4\frac{f''''(0)}{4!}+...
f(x)=f(0)+x1!f′(0)+x22!f′′(0)+x33!f′′′(0)+x44!f′′′′(0)+... //这既是麦克劳林级数的形式
(其实正式的麦克劳林级数需要计算等式右边的具体值,会规定一个函数的最高次项n,所以等号右边的最终项是 x n f ( n ) ( 0 ) n ! x^n\frac{f^{(n)}(0)}{n!} xnn!f(n)(0),并且根据函数极限定义公式,无穷的概念去掉后会转化为一个误差余项,这样两边才能成为等式。一个拉格朗日误差余项会涉及到泰勒公式,拉格朗日/柯西中值定理以及极限,微分,无穷小等概念。具体值以及余项与下面的推导无关(正弦函数的最高次是无限大的且只关心它的二次项))
再分析正弦函数的多阶导数。
(图1:红线为y=sinx的2,4,6,8,10阶导数,黑线为1,5,9,蔚蓝为3,7,11)
观察上图,当x等于0时,正弦函数的各阶导数值会在1,0,-1之间重复出现。结合其规律与上面的麦克劳林级数,与偶数阶导数相乘的项一定等于0,约掉了,乘以奇数阶导数的项有一个符号的正负交替变化。所以可以将sinx的麦克劳林级数改写为:
s
i
n
(
x
)
=
x
−
x
3
3
!
+
x
5
5
!
−
x
7
7
!
+
x
9
9
!
−
.
.
.
sin(x)=x-\frac{x^3}{3!}+\frac{x^5}{5!}-\frac{x^7}{7!}+\frac{x^9}{9!}-...
sin(x)=x−3!x3+5!x5−7!x7+9!x9−...
两边再除以x:
s i n ( x ) x = 1 \frac{sin(x)}{x}=1 xsin(x)=1 − x 2 3 ! -\frac{x^2}{3!} −3!x2 + x 4 5 ! − x 6 7 ! + x 8 9 ! − . . . +\frac{x^4}{5!}-\frac{x^6}{7!}+\frac{x^8}{9!}-... +5!x4−7!x6+9!x8−...
我们将上面的等式右边部分称为 A。并关注其中的
x
2
x^2
x2项。
再回到正弦函数。
(图2:
f
(
x
)
=
s
i
n
(
x
)
f(x)=sin(x)
f(x)=sin(x))
观察上图sin(x)不断的,无穷的,有规律的与数轴交叉,再考虑
s
i
n
(
π
)
=
s
i
n
(
2
π
)
=
.
.
.
=
s
i
n
(
n
π
)
=
0
sin(\pi)=sin(2\pi)=...=sin(n\pi)=0
sin(π)=sin(2π)=...=sin(nπ)=0的性质,仿佛在暗示我们可以将正弦函数与数轴交叉的所有case总结为下面的无穷级数(依然不考虑微积分中的无穷大与误差问题):
s
i
n
(
x
)
=
x
(
1
−
x
π
)
(
1
+
x
π
)
(
1
−
x
2
π
)
(
1
+
x
2
π
)
(
1
−
x
3
π
)
(
1
+
x
3
π
)
.
.
.
(
1
−
x
n
π
)
(
1
+
x
n
π
)
sin(x)=x(1-\frac{x}{\pi})(1+\frac{x}{\pi})(1-\frac{x}{2\pi})(1+\frac{x}{2\pi})(1-\frac{x}{3\pi})(1+\frac{x}{3\pi})...(1-\frac{x}{n\pi})(1+\frac{x}{n\pi})
sin(x)=x(1−πx)(1+πx)(1−2πx)(1+2πx)(1−3πx)(1+3πx)...(1−nπx)(1+nπx)
观察等式,当x等于 − n π . . . − 1 π , 0 π , 1 π , 2 π , 3 π . . . n π -n\pi...-1\pi,0\pi,1\pi,2\pi,3\pi...n\pi −nπ...−1π,0π,1π,2π,3π...nπ中的任何一个时,等式左边等于0。而等式右边也会出现一个等于0的项(例如x= π \pi π,等式右边就变成 x ( 1 − π π ) . . . x(1-\frac{\pi}{\pi})... x(1−ππ)...),所以等式右边也会等于0。那么根据归纳法,当x等于任意 π \pi π时等式是成立的。而当x等于任意值时的严格证明在那个年代还没出现(一百年后由魏尔施特拉斯分解定理证明)。但由于该无穷级数是收敛的,欧拉那时是通过手动计算(x给定任意值,计算等式两边,n值越大会越逼近等式左边)启发式的证明了该等式。
(图3:通过现代计算机绘图[n=10/100/1000]可以很容易的看出该无穷级数向sinx收敛的趋势)
这个无穷级数的提出是欧拉解决巴塞尔问题的核心。由于该无穷级数逻辑上的直观性,欧拉有可能不是第一个观察到这个无穷级数的人,但绝对是第一个用它解决(并确实解决了)巴塞尔问题的数学家。该无穷级数可以很容易的与上面正弦函数的麦克劳林级数相结合,它的
(
1
−
a
)
(
1
+
a
)
(1-a)(1+a)
(1−a)(1+a)这种排列组合形式又为之后
x
2
x^2
x2项的提炼留下了伏笔。
无穷级数等式两边除以x,将右边部分称为B:
s i n ( x ) x = ( 1 − x π ) ( 1 + x π ) ( 1 − x 2 π ) ( 1 + x 2 π ) ( 1 − x 3 π ) ( 1 + x 3 π ) . . . ( 1 − x n π ) ( 1 + x n π ) \frac{sin(x)}{x}=(1-\frac{x}{\pi})(1+\frac{x}{\pi})(1-\frac{x}{2\pi})(1+\frac{x}{2\pi})(1-\frac{x}{3\pi})(1+\frac{x}{3\pi})...(1-\frac{x}{n\pi})(1+\frac{x}{n\pi}) xsin(x)=(1−πx)(1+πx)(1−2πx)(1+2πx)(1−3πx)(1+3πx)...(1−nπx)(1+nπx)
接下来将B中的
x
2
x^2
x2项提炼出来,先对每两个临近的括号进行结合:
s
i
n
x
x
=
(
1
−
x
2
π
2
)
(
1
−
x
2
2
2
π
2
)
(
1
−
x
2
3
2
π
2
)
.
.
.
(
1
−
x
2
n
2
π
2
)
\frac{sinx}{x}=(1-\frac{x^2}{\pi^2})(1-\frac{x^2}{2^2\pi^2})(1-\frac{x^2}{3^2\pi^2})...(1-\frac{x^2}{n^2\pi^2})
xsinx=(1−π2x2)(1−22π2x2)(1−32π2x2)...(1−n2π2x2)
观察上面的等式,可以看出不断展开结合时的规律,所有
x
2
x^2
x2项和1不断相乘,因此可以直接得出:
B
中
所
有
x
2
项
的
和
=
−
x
2
π
2
−
x
2
2
2
π
2
−
x
2
3
2
π
2
−
x
2
4
2
π
2
.
.
.
−
x
2
n
2
π
2
B中所有x^2项的和=-\frac{x^2}{\pi^2}-\frac{x^2}{2^2\pi^2}-\frac{x^2}{3^2\pi^2}-\frac{x^2}{4^2\pi^2}...-\frac{x^2}{n^2\pi^2}
B中所有x2项的和=−π2x2−22π2x2−32π2x2−42π2x2...−n2π2x2
再将
−
x
2
π
2
-\frac{x^2}{\pi^2}
−π2x2提出来:
B
中
所
有
x
2
项
的
和
=
−
x
2
π
2
(
1
1
2
+
1
2
2
+
1
3
2
+
.
.
.
+
1
n
2
)
B中所有x^2项的和=-\frac{x^2}{\pi^2}(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2})
B中所有x2项的和=−π2x2(121+221+321+...+n21)
上面等式右边括号中部分既是巴塞尔问题本身:
∑
n
=
1
∞
1
n
2
=
lim
n
→
+
∞
(
1
1
2
+
1
2
2
+
1
3
2
+
.
.
.
+
1
n
2
)
\sum_{n=1}^{\infty}\frac{1}{n^2}= \lim_{n \to +\infty}(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2})
∑n=1∞n21=limn→+∞(121+221+321+...+n21)
因为A=B,那么它们的
x
2
x^2
x2项的和也相等,所以:
−
x
2
6
=
−
x
2
π
2
∑
n
=
1
∞
1
n
2
-\frac{x^2}{6}=-\frac{x^2}{\pi^2}\sum_{n=1}^{\infty}\frac{1}{n^2}
−6x2=−π2x2∑n=1∞n21
∑
n
=
1
∞
1
n
2
=
π
2
6
\sum_{n=1}^{\infty}\frac{1}{n^2}=\frac{\pi^2}{6}
n=1∑∞n21=6π2
所有平方数的倒数的和为
π
2
6
\frac{\pi^2}{6}
6π2 。