巴塞尔问题欧拉解法逐步推导与分析

巴塞尔问题:
所有平方数的倒数的和是多少?
1 1 2 + 1 2 2 + 1 3 2 + 1 4 2 + . . . + 1 n 2 = ? \frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}=? 121+221+321+421+...+n21=?(n趋近于正无穷)

推导开始:


//分割线内先推导一个麦克劳林级数

假如有任意一个多项式函数f(x),将所有同次项合并后,我们都可以用以下形式给出:

f ( x ) = A + B x + C x 2 + D x 3 + E x 4 + F x 5 + G x 6 + . . . f(x)=A+Bx+Cx^2+Dx^3+Ex^4+Fx^5+Gx^6+... f(x)=A+Bx+Cx2+Dx3+Ex4+Fx5+Gx6+...         其中 A,B,C,D,…以及x都是实数,省略号之后的项的次数向无穷大整数递增。

那么显而易见
f ( 0 ) = A f(0)=A f(0)=A               我们可以将它改写为 A = f ( 0 ) A=f(0) A=f(0)
根据导数公式 f ( x ) = x n , f ′ ( x ) = n x n − 1 f(x)=x^n,f'(x)=nx^{n-1} f(x)=xnf(x)=nxn1
我们可以得出
f ′ ( x ) = B + 2 C x + 3 D x 2 + 4 E x 3 + 5 F x 4 + 6 G x 5 + . . . f'(x)=B+2Cx+3Dx^2 + 4Ex^3+5Fx^4+6Gx^5+... f(x)=B+2Cx+3Dx2+4Ex3+5Fx4+6Gx5+...
所以
f ′ ( 0 ) = B f'(0)=B f(0)=B               我们可以将它改写为 B = f ′ ( 0 ) 1 ! B=\frac{f'(0)}{1!} B=1!f(0)
 
该函数从1到n阶的导数我们都可以像上面这样有规律的推下去:
 
f ′ ′ ( x ) = 2 C + 6 D x + 12 E x 2 + 20 F x 3 + 30 G x 4 + . . . f''(x)=2C+6Dx+12Ex^2+20Fx^3+30Gx^4+... f(x)=2C+6Dx+12Ex2+20Fx3+30Gx4+...
f ′ ′ ( 0 ) = 2 C f''(0)=2C f(0)=2C             我们可以将它改写为 C = f ′ ′ ( 0 ) 2 ! C=\frac{f''(0)}{2!} C=2!f(0)
f ′ ′ ′ ( x ) = 6 D + 24 E x + 60 F x 2 + 120 G x 3 + . . . f'''(x)=6D+24Ex+60Fx^2+120Gx^3+... f(x)=6D+24Ex+60Fx2+120Gx3+...
f ′ ′ ′ ( 0 ) = 6 D f'''(0)=6D f(0)=6D            我们可以将它改写为 D = f ′ ′ ′ ( 0 ) 3 ! D=\frac{f'''(0)}{3!} D=3!f(0)

 
以上,将改写后的系数A,B,C,D,…带回到f(x)多项式函数最上面的原型,可以得出:
 
f ( x ) = f ( 0 ) + x f ′ ( 0 ) 1 ! + x 2 f ′ ′ ( 0 ) 2 ! + x 3 f ′ ′ ′ ( 0 ) 3 ! + x 4 f ′ ′ ′ ′ ( 0 ) 4 ! + . . . f(x)=f(0)+x\frac{f'(0)}{1!}+x^2\frac{f''(0)}{2!}+x^3\frac{f'''(0)}{3!}+x^4\frac{f''''(0)}{4!}+... f(x)=f(0)+x1!f(0)+x22!f(0)+x33!f(0)+x44!f(0)+...            //这既是麦克劳林级数的形式

(其实正式的麦克劳林级数需要计算等式右边的具体值,会规定一个函数的最高次项n,所以等号右边的最终项是 x n f ( n ) ( 0 ) n ! x^n\frac{f^{(n)}(0)}{n!} xnn!f(n)(0),并且根据函数极限定义公式,无穷的概念去掉后会转化为一个误差余项,这样两边才能成为等式。一个拉格朗日误差余项会涉及到泰勒公式,拉格朗日/柯西中值定理以及极限,微分,无穷小等概念。具体值以及余项与下面的推导无关(正弦函数的最高次是无限大的且只关心它的二次项))


再分析正弦函数的多阶导数。
在这里插入图片描述
(图1:红线为y=sinx的2,4,6,8,10阶导数,黑线为1,5,9,蔚蓝为3,7,11)
 
观察上图,当x等于0时,正弦函数的各阶导数值会在1,0,-1之间重复出现。结合其规律与上面的麦克劳林级数,与偶数阶导数相乘的项一定等于0,约掉了,乘以奇数阶导数的项有一个符号的正负交替变化。所以可以将sinx的麦克劳林级数改写为:
 
s i n ( x ) = x − x 3 3 ! + x 5 5 ! − x 7 7 ! + x 9 9 ! − . . . sin(x)=x-\frac{x^3}{3!}+\frac{x^5}{5!}-\frac{x^7}{7!}+\frac{x^9}{9!}-... sin(x)=x3!x3+5!x57!x7+9!x9...
 
两边再除以x:
 

s i n ( x ) x = 1 \frac{sin(x)}{x}=1 xsin(x)=1 − x 2 3 ! -\frac{x^2}{3!} 3!x2 + x 4 5 ! − x 6 7 ! + x 8 9 ! − . . . +\frac{x^4}{5!}-\frac{x^6}{7!}+\frac{x^8}{9!}-... +5!x47!x6+9!x8...

 
我们将上面的等式右边部分称为 A。并关注其中的 x 2 x^2 x2项。
 

再回到正弦函数。
在这里插入图片描述
(图2: f ( x ) = s i n ( x ) f(x)=sin(x) f(x)=sin(x))
 
观察上图sin(x)不断的,无穷的,有规律的与数轴交叉,再考虑 s i n ( π ) = s i n ( 2 π ) = . . . = s i n ( n π ) = 0 sin(\pi)=sin(2\pi)=...=sin(n\pi)=0 sin(π)=sin(2π)=...=sin(nπ)=0的性质,仿佛在暗示我们可以将正弦函数与数轴交叉的所有case总结为下面的无穷级数(依然不考虑微积分中的无穷大与误差问题):
 
s i n ( x ) = x ( 1 − x π ) ( 1 + x π ) ( 1 − x 2 π ) ( 1 + x 2 π ) ( 1 − x 3 π ) ( 1 + x 3 π ) . . . ( 1 − x n π ) ( 1 + x n π ) sin(x)=x(1-\frac{x}{\pi})(1+\frac{x}{\pi})(1-\frac{x}{2\pi})(1+\frac{x}{2\pi})(1-\frac{x}{3\pi})(1+\frac{x}{3\pi})...(1-\frac{x}{n\pi})(1+\frac{x}{n\pi}) sin(x)=x(1πx)(1+πx)(12πx)(1+2πx)(13πx)(1+3πx)...(1nπx)(1+nπx)      
 

观察等式,当x等于 − n π . . . − 1 π , 0 π , 1 π , 2 π , 3 π . . . n π -n\pi...-1\pi,0\pi,1\pi,2\pi,3\pi...n\pi nπ...1π,0π,1π,2π,3π...nπ中的任何一个时,等式左边等于0。而等式右边也会出现一个等于0的项(例如x= π \pi π,等式右边就变成 x ( 1 − π π ) . . . x(1-\frac{\pi}{\pi})... x(1ππ)...),所以等式右边也会等于0。那么根据归纳法,当x等于任意 π \pi π时等式是成立的。而当x等于任意值时的严格证明在那个年代还没出现(一百年后由魏尔施特拉斯分解定理证明)。但由于该无穷级数是收敛的,欧拉那时是通过手动计算(x给定任意值,计算等式两边,n值越大会越逼近等式左边)启发式的证明了该等式。

在这里插入图片描述
(图3:通过现代计算机绘图[n=10/100/1000]可以很容易的看出该无穷级数向sinx收敛的趋势)

这个无穷级数的提出是欧拉解决巴塞尔问题的核心。由于该无穷级数逻辑上的直观性,欧拉有可能不是第一个观察到这个无穷级数的人,但绝对是第一个用它解决(并确实解决了)巴塞尔问题的数学家。该无穷级数可以很容易的与上面正弦函数的麦克劳林级数相结合,它的 ( 1 − a ) ( 1 + a ) (1-a)(1+a) (1a)(1+a)这种排列组合形式又为之后 x 2 x^2 x2项的提炼留下了伏笔。
 
无穷级数等式两边除以x,将右边部分称为B:
 

s i n ( x ) x = ( 1 − x π ) ( 1 + x π ) ( 1 − x 2 π ) ( 1 + x 2 π ) ( 1 − x 3 π ) ( 1 + x 3 π ) . . . ( 1 − x n π ) ( 1 + x n π ) \frac{sin(x)}{x}=(1-\frac{x}{\pi})(1+\frac{x}{\pi})(1-\frac{x}{2\pi})(1+\frac{x}{2\pi})(1-\frac{x}{3\pi})(1+\frac{x}{3\pi})...(1-\frac{x}{n\pi})(1+\frac{x}{n\pi}) xsin(x)=(1πx)(1+πx)(12πx)(1+2πx)(13πx)(1+3πx)...(1nπx)(1+nπx)

 
接下来将B中的 x 2 x^2 x2项提炼出来,先对每两个临近的括号进行结合:
 
s i n x x = ( 1 − x 2 π 2 ) ( 1 − x 2 2 2 π 2 ) ( 1 − x 2 3 2 π 2 ) . . . ( 1 − x 2 n 2 π 2 ) \frac{sinx}{x}=(1-\frac{x^2}{\pi^2})(1-\frac{x^2}{2^2\pi^2})(1-\frac{x^2}{3^2\pi^2})...(1-\frac{x^2}{n^2\pi^2}) xsinx=(1π2x2)(122π2x2)(132π2x2)...(1n2π2x2)
 
观察上面的等式,可以看出不断展开结合时的规律,所有 x 2 x^2 x2项和1不断相乘,因此可以直接得出:
 
B 中 所 有 x 2 项 的 和 = − x 2 π 2 − x 2 2 2 π 2 − x 2 3 2 π 2 − x 2 4 2 π 2 . . . − x 2 n 2 π 2 B中所有x^2项的和=-\frac{x^2}{\pi^2}-\frac{x^2}{2^2\pi^2}-\frac{x^2}{3^2\pi^2}-\frac{x^2}{4^2\pi^2}...-\frac{x^2}{n^2\pi^2} Bx2=π2x222π2x232π2x242π2x2...n2π2x2
 
再将 − x 2 π 2 -\frac{x^2}{\pi^2} π2x2提出来:
 
B 中 所 有 x 2 项 的 和 = − x 2 π 2 ( 1 1 2 + 1 2 2 + 1 3 2 + . . . + 1 n 2 ) B中所有x^2项的和=-\frac{x^2}{\pi^2}(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}) Bx2=π2x2(121+221+321+...+n21)
 
上面等式右边括号中部分既是巴塞尔问题本身: ∑ n = 1 ∞ 1 n 2 = lim ⁡ n → + ∞ ( 1 1 2 + 1 2 2 + 1 3 2 + . . . + 1 n 2 ) \sum_{n=1}^{\infty}\frac{1}{n^2}= \lim_{n \to +\infty}(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}) n=1n21=limn+(121+221+321+...+n21)
 
因为A=B,那么它们的 x 2 x^2 x2项的和也相等,所以:
 
− x 2 6 = − x 2 π 2 ∑ n = 1 ∞ 1 n 2 -\frac{x^2}{6}=-\frac{x^2}{\pi^2}\sum_{n=1}^{\infty}\frac{1}{n^2} 6x2=π2x2n=1n21
 
 
∑ n = 1 ∞ 1 n 2 = π 2 6 \sum_{n=1}^{\infty}\frac{1}{n^2}=\frac{\pi^2}{6} n=1n21=6π2
 
所有平方数的倒数的和为 π 2 6 \frac{\pi^2}{6} 6π2

  • 3
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值