/**
* 二维树状数组:
* 二维的其实和一维差不多不过是对二维区间的维护。
* 其实一维和二维的区别可以类比一重积分和二重积分,
* 这样在二维树状数组用get_sum()的时候就好理解些了。
* 这题还要注意的就是区间的选择:也就是算 (x, y) -> (xx, yy) 的正方形区间的时候
* 公式get_sum(xx, yy) - get_sum(xx, y - 1) - get_sum(x - 1, yy) + get_sum(x - 1, y - 1)
* x - 1, y - 1是关键,如果不减一的话,就把x那列和y那行给减去了。实际上答案是要算上这些的
* 总之画个图就行了。
* 还有个就是注意审题。 用树状数组是不能从0开始的!
* 然和题目又是从 0->S-1的区间大小。所以要对输入的坐标数据加一后再进行update或是query
*/
#include <cstdio>
#include <cstring>
#include <cmath>
#include <string>
#include <algorithm>
#define INF 0x7fffffff
#define MAXS 1025
#define LL long long
using namespace std;
int c[MAXS][MAXS], s;
int lowbit(int x) {
return x & (-x);
}
void update(int x, int y, int delta) {
for(int i = x; i <= s; i += lowbit(i)) {
for(int j = y; j <= s; j += lowbit(j))
c[j][i] += delta;
}
}
int get_sum(int x, int y) {
int ret = 0;
for(int i = x; i > 0; i -= lowbit(i)) {
for(int j = y; j > 0; j -= lowbit(j))
ret += c[j][i];
}
return ret;
}
void init() {
for(int i = 1; i <= s; i ++) {
for(int j = 1; j <= s; j ++)
c[i][j] = 0;
}
}
void query(int x, int y, int xx, int yy) {
printf("%d\n",
get_sum(xx, yy) - get_sum(xx, y - 1) - get_sum(x - 1, yy) + get_sum(x - 1, y - 1));
}
int main()
{
int cmd, x, y, xx, yy, d;
while(scanf("%d%d", &cmd, &s) != EOF) {
init();
while(1) {
scanf("%d", &cmd);
if(cmd == 1) {
scanf("%d%d%d", &x, &y, &d);
update(x + 1, y + 1, d);
} else if(cmd == 2) {
scanf("%d%d%d%d", &x, &y, &xx, &yy);
query(x + 1, y + 1, xx + 1, yy + 1);
} else break;
}
}
return 0;
}
POJ 1195 Mobile phones(二维树状数组)
最新推荐文章于 2013-10-23 21:02:18 发布