PAT--1053. Path of Equal Weight

Given a non-empty tree with root R, and with weight Wi assigned to each tree node Ti. The weight of a path from R to L is defined to be the sum of the weights of all the nodes along the path from R to any leaf node L.

Now given any weighted tree, you are supposed to find all the paths with their weights equal to a given number. For example, let’s consider the tree showed in Figure 1: for each node, the upper number is the node ID which is a two-digit number, and the lower number is the weight of that node. Suppose that the given number is 24, then there exists 4 different paths which have the same given weight: {10 5 2 7}, {10 4 10}, {10 3 3 6 2} and {10 3 3 6 2}, which correspond to the red edges in Figure 1.
这里写图片描述

Figure 1
Input Specification:

Each input file contains one test case. Each case starts with a line containing 0 < N <= 100, the number of nodes in a tree, M (< N), the number of non-leaf nodes, and 0 < S < 230, the given weight number. The next line contains N positive numbers where Wi (<1000) corresponds to the tree node Ti. Then M lines follow, each in the format:

ID K ID[1] ID[2] … ID[K]
where ID is a two-digit number representing a given non-leaf node, K is the number of its children, followed by a sequence of two-digit ID’s of its children. For the sake of simplicity, let us fix the root ID to be 00.

Output Specification:

For each test case, print all the paths with weight S in non-increasing order. Each path occupies a line with printed weights from the root to the leaf in order. All the numbers must be separated by a space with no extra space at the end of the line.

Note: sequence {A1, A2, …, An} is said to be greater than sequence {B1, B2, …, Bm} if there exists 1 <= k < min{n, m} such that Ai = Bi for i=1, … k, and Ak+1 > Bk+1.

Sample Input:
20 9 24
10 2 4 3 5 10 2 18 9 7 2 2 1 3 12 1 8 6 2 2
00 4 01 02 03 04
02 1 05
04 2 06 07
03 3 11 12 13
06 1 09
07 2 08 10
16 1 15
13 3 14 16 17
17 2 18 19
Sample Output:
10 5 2 7
10 4 10
10 3 3 6 2
10 3 3 6 2

题解

找出所有从根到叶子路径之和为S的路径。
建树的时候,对每个非叶节点的子节点,按其权重从大到小排序,满足序列非递增顺序的输出要求。

#include <bits/stdc++.h>
using namespace std;

const int maxn = 110;
int n, m, s;

vector<int> G[maxn];
vector<int> path;
int w[maxn];


void dfs(int u, int sum){

    if(sum > s) return;
    if(G[u].empty() && sum == s){
        for(int i = 0; i < path.size(); ++i){
            if(i) cout << " ";
            cout << w[path[i]];
       } 
        cout << endl;
        return;
    }


    for(int i = 0; i < G[u].size(); ++i){
        int v = G[u][i];
        path.push_back(v);
        dfs(v, sum + w[v]);
        path.pop_back();
    }

}


int main(){

    cin >> n >> m >> s;
    for(int i = 0; i < n; ++i) cin >> w[i];
    int id, k, tmp;
    for(int i = 0; i < m; ++i){
        cin >> id >> k; 
        vector<int> cid;
        while(k--){
            cin >> tmp;
            cid.push_back(tmp);
        }
        sort(cid.begin(), cid.end(), [](int a, int b){ return w[a] > w[b]; });
        for(auto it = cid.begin(); it != cid.end(); ++it) G[id].push_back(*it);
    }

    path.push_back(0);
    dfs(0, w[0]);

    return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值