剑指offer-36-数组中的逆序对-java

题目及测试

package sword036;
/*题目:在数组中的两个数字如果前面一个数字大于后面的数字,则这两个数字组成一个逆序对。
 * 输入一个数组,求出这个数组中的逆序对的总数
*/
public class main {
	
	public static void main(String[] args) {
		int[][] testTable = {{1,1,2},{7,4,6,5},{4,3,2,1},{1,1,1,1}};
		for (int[] ito : testTable) {
			test(ito);
		}
	}
		 
	private static void test(int[] ito) {
		Solution solution = new Solution();
		int rtn;
		long begin = System.currentTimeMillis();
		for (int i = 0; i < ito.length; i++) {
		    System.out.print(ito[i]+" ");
		}//开始时打印数组
		rtn = solution.inversePairs(ito);//执行程序
		long end = System.currentTimeMillis();		
		System.out.println("rtn=" + rtn);
		/*for (int i = 0; i < rtn; i++) {
		    System.out.print(ito[i]+" ");
		}//打印结果几数组
*/		System.out.println();
		System.out.println("耗时:" + (end - begin) + "ms");
		System.out.println("-------------------");
	}

}

解法1(成功)

例如在数组{7,5,6,4}中,一共存在5对逆序对,分别是{7,6},{7,5},{7,4},{6,4},{5,4}。

看到这个题目,我们的第一反应就是顺序扫描整个数组。每扫描到一个数组的时候,逐个比较该数字和它后面的数字的大小。如果后面的数字比它小,则这两个数字就组成一个逆序对。假设数组中含有n个数字。由于每个数字都要和O(n)个数字做比较,因此这个算法的时间复杂度为O(n2)。我们尝试找找更快的算法。

我们以数组{7,5,6,4}为例来分析统计逆序对的过程,每次扫描到一个数字的时候,我们不能拿它和后面的每一个数字做比较,否则时间复杂度就是O(n2)因此我们可以考虑先比较两个相邻的数字。

如下图所示,我们先把数组分解称两个长度为2的子数组,再把这两个子数组分别茶城两个长度为1的子数组。接下来一边合并相邻的子数组,一边统计逆序对的数目。在第一对长度为1的子数组{7},{5}中7大于5,因此{7,5}组成一个逆序对。同样在第二对长度为1的子数组{6},{4}中也有逆序对{6,4}。由于我们已经统计了这两队子数组内部逆序对,因此需要把这两对子数组排序,以免在以后的统计过程中再重复统计。

接下来我们统计两个长度为2的子数组之间的逆序对。

我们先用两个指针分别指向两个子数组的末尾,并每次比较两个指针指向的数字。如果第一个子数组中的数字大于第二个子数组中的数字,则构成逆序对,并且逆序对的数目等于第二个子数组中的剩余数字的个数。如果第一个数组中的数字小于或等于第二个数组中的数字,则不构成逆序对。每一次比较的时候,我们都把较大的数字从后往前复制到一个辅助数组中去,确保辅助数组中的数字是递增排序的。在把较大的数字复制到数组之后,把对应的指针向前移动一位,接着来进行下一轮的比较。

经过前面详细的讨论,我们可疑总结出统计逆序对的过程:先把数组分隔成子数组,先统计出子数组内部的逆序对的数目,然后再统计出两个相邻子数组之间的逆序对的数目。在统计逆序对的过程中,还需要对数组进行排序。如果对排序算法很熟悉,我们不难发现这个排序的过程就是归并排序。

package sword036;

public class Solution {

	int total = 0;

	public int inversePairs(int[] nums) {
		int length = nums.length;
		if (length == 0 || length == 1) {
			return 0;
		}
		mergeSort(nums, 0, length - 1);
		return total;
	}

	private void mergeSort(int[] nums, int i, int j) {
		if (i >= j) {
			return;
		}
		int mid = (i + j) / 2;
		mergeSort(nums, i, mid);
		mergeSort(nums, mid + 1, j);
		calInverse(nums, i, mid, j);
		merge(nums, i, mid, j);
	}

	// 合并[i,mid],(mid,j]
	private void merge(int[] nums, int i, int mid, int j) {
		int leftIndex = i;
		int rightIndex = mid + 1;
		int[] temp = new int[j - i + 1];
		for (int k = 0; k < temp.length; k++) {
			if (leftIndex > mid) {
				temp[k] = nums[rightIndex];
				continue;
			}
			if (rightIndex > j) {
				temp[k] = nums[leftIndex];
				continue;
			}
			if (nums[leftIndex] < nums[rightIndex]) {
				temp[k] = nums[leftIndex];
				leftIndex++;
			} else {
				temp[k] = nums[rightIndex];
				rightIndex++;
			}
		}
		for (int k = 0; k < temp.length; k++) {
			nums[i + k] = temp[k];
		}
	}

	// [i,mid],(mid,j] 计算逆序数 1 3 5    2 3 6 111 555 555 111
	private void calInverse(int[] nums, int i, int mid, int j) {
		int leftIndex = i;
		int rightIndex = mid + 1;
		// 找到leftIndex的最后一个比他小的数
		while (leftIndex <= mid && rightIndex <= j) {
			if (nums[leftIndex] <= nums[rightIndex]) {
				total = total + rightIndex - (mid + 1);
				leftIndex ++;
				continue;
			}else {
				rightIndex++;
			}
		}
		if(leftIndex <= mid) {
			total = total + (mid - leftIndex + 1) * (rightIndex - mid - 1);
		}
	}
}

网上的做法,更好

/** 
 * 逆序对: 
 * 在数组中的两个数字如果前面一个数字大于后面一个数字,则这两个数字组成一个逆序对。 
 * 输入一个数组,求出这个数组中的逆序对的总数。 
 */  
package swordForOffer;  
  
import java.util.ArrayList;  
  
/** 
 * @author JInShuangQi 
 * 
 * 2015年8月9日 
 */  
public class E36InversePairs {  
      
    private ArrayList<Integer> assignList(ArrayList<Integer> list ,int start,int end){  
        ArrayList<Integer> des = new ArrayList<Integer>();  
        for(int i = start;i<end;i++){  
            des.add(list.get(i));  
        }  
        return des;  
    }  
    public long mergeTwoList(ArrayList<Integer> list,int start,int half,int end){  
        long count = 0;  
        ArrayList<Integer> tempLeft = assignList(list,start,half);  
        ArrayList<Integer> tempRight = assignList(list,half,end);  
        int leftIndex = 0;  
        int rightIndex = 0;  
        int index = start;  
        while(leftIndex < tempLeft.size() && rightIndex <tempRight.size()){  
            int temp1 = tempLeft.get(leftIndex);  
            int temp2 = tempRight.get(rightIndex);  
            if(temp1 > temp2){  
                count+=tempLeft.size() - leftIndex;  
                list.set(index, temp2);  
                index++;  
                rightIndex++;  
            }else{  
                list.set(index, temp1);  
                index++;  
                leftIndex++;  
            }  
        }  
        for(;leftIndex < tempLeft.size();leftIndex++){  
            list.set(index, tempLeft.get(leftIndex));  
            index++;  
        }  
        for(;rightIndex <tempRight.size();rightIndex++){  
            list.set(index, tempRight.get(rightIndex));  
            index++;  
        }  
        return count;  
    }  
    public long getInversions(ArrayList<Integer> list,int start,int end){  
        long count = 0;  
        if((end-start)<= 1)  
            return 0;  
        int half = start+(end-start)/2;  
        count += getInversions(list,start,half);  
        count += getInversions(list,half,end);  
        count += mergeTwoList(list,start,half,end);  
        return count;  
    }  
    public long getInversePairs(int[] arr){  
        ArrayList<Integer> al = new ArrayList<Integer>();  
        for(int i = 0;i<arr.length;i++){  
            al.add(arr[i]);  
        }  
        int end =arr.length;  
        return getInversions(al,0,end);  
    }  
    public static void main(String[] args){  
        int[] arr={7,5,6,4};  
        E36InversePairs test = new E36InversePairs();  
        System.out.println(test.getInversePairs(arr));  
    }  
}  

解法2(成功)
前面的数据塞入treeset,后面的数字,先塞入treeset,然后看比它大的数字有多少

package sword036;

import java.util.Set;
import java.util.TreeSet;

public class Solution {


	public int inversePairs(int[] nums) {
		int length = nums.length;
		if (length == 0 || length == 1) {
			return 0;
		}
		int result = 0;
		TreeSet<Integer> set = new TreeSet<Integer>();
		set.add(nums[0]);
		for(int i=1;i<length;i++) {
			set.add(nums[i]);
			Set<Integer> greaterSet = set.tailSet(nums[i], false);
			result = result + greaterSet.size();
		}
		return result;
	}

}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值