题目及测试
package sword036;
/*题目:在数组中的两个数字如果前面一个数字大于后面的数字,则这两个数字组成一个逆序对。
* 输入一个数组,求出这个数组中的逆序对的总数
*/
public class main {
public static void main(String[] args) {
int[][] testTable = {{1,1,2},{7,4,6,5},{4,3,2,1},{1,1,1,1}};
for (int[] ito : testTable) {
test(ito);
}
}
private static void test(int[] ito) {
Solution solution = new Solution();
int rtn;
long begin = System.currentTimeMillis();
for (int i = 0; i < ito.length; i++) {
System.out.print(ito[i]+" ");
}//开始时打印数组
rtn = solution.inversePairs(ito);//执行程序
long end = System.currentTimeMillis();
System.out.println("rtn=" + rtn);
/*for (int i = 0; i < rtn; i++) {
System.out.print(ito[i]+" ");
}//打印结果几数组
*/ System.out.println();
System.out.println("耗时:" + (end - begin) + "ms");
System.out.println("-------------------");
}
}
解法1(成功)
例如在数组{7,5,6,4}中,一共存在5对逆序对,分别是{7,6},{7,5},{7,4},{6,4},{5,4}。
看到这个题目,我们的第一反应就是顺序扫描整个数组。每扫描到一个数组的时候,逐个比较该数字和它后面的数字的大小。如果后面的数字比它小,则这两个数字就组成一个逆序对。假设数组中含有n个数字。由于每个数字都要和O(n)个数字做比较,因此这个算法的时间复杂度为O(n2)。我们尝试找找更快的算法。
我们以数组{7,5,6,4}为例来分析统计逆序对的过程,每次扫描到一个数字的时候,我们不能拿它和后面的每一个数字做比较,否则时间复杂度就是O(n2)因此我们可以考虑先比较两个相邻的数字。
如下图所示,我们先把数组分解称两个长度为2的子数组,再把这两个子数组分别茶城两个长度为1的子数组。接下来一边合并相邻的子数组,一边统计逆序对的数目。在第一对长度为1的子数组{7},{5}中7大于5,因此{7,5}组成一个逆序对。同样在第二对长度为1的子数组{6},{4}中也有逆序对{6,4}。由于我们已经统计了这两队子数组内部逆序对,因此需要把这两对子数组排序,以免在以后的统计过程中再重复统计。
接下来我们统计两个长度为2的子数组之间的逆序对。
我们先用两个指针分别指向两个子数组的末尾,并每次比较两个指针指向的数字。如果第一个子数组中的数字大于第二个子数组中的数字,则构成逆序对,并且逆序对的数目等于第二个子数组中的剩余数字的个数。如果第一个数组中的数字小于或等于第二个数组中的数字,则不构成逆序对。每一次比较的时候,我们都把较大的数字从后往前复制到一个辅助数组中去,确保辅助数组中的数字是递增排序的。在把较大的数字复制到数组之后,把对应的指针向前移动一位,接着来进行下一轮的比较。
经过前面详细的讨论,我们可疑总结出统计逆序对的过程:先把数组分隔成子数组,先统计出子数组内部的逆序对的数目,然后再统计出两个相邻子数组之间的逆序对的数目。在统计逆序对的过程中,还需要对数组进行排序。如果对排序算法很熟悉,我们不难发现这个排序的过程就是归并排序。
package sword036;
public class Solution {
int total = 0;
public int inversePairs(int[] nums) {
int length = nums.length;
if (length == 0 || length == 1) {
return 0;
}
mergeSort(nums, 0, length - 1);
return total;
}
private void mergeSort(int[] nums, int i, int j) {
if (i >= j) {
return;
}
int mid = (i + j) / 2;
mergeSort(nums, i, mid);
mergeSort(nums, mid + 1, j);
calInverse(nums, i, mid, j);
merge(nums, i, mid, j);
}
// 合并[i,mid],(mid,j]
private void merge(int[] nums, int i, int mid, int j) {
int leftIndex = i;
int rightIndex = mid + 1;
int[] temp = new int[j - i + 1];
for (int k = 0; k < temp.length; k++) {
if (leftIndex > mid) {
temp[k] = nums[rightIndex];
continue;
}
if (rightIndex > j) {
temp[k] = nums[leftIndex];
continue;
}
if (nums[leftIndex] < nums[rightIndex]) {
temp[k] = nums[leftIndex];
leftIndex++;
} else {
temp[k] = nums[rightIndex];
rightIndex++;
}
}
for (int k = 0; k < temp.length; k++) {
nums[i + k] = temp[k];
}
}
// [i,mid],(mid,j] 计算逆序数 1 3 5 2 3 6 111 555 555 111
private void calInverse(int[] nums, int i, int mid, int j) {
int leftIndex = i;
int rightIndex = mid + 1;
// 找到leftIndex的最后一个比他小的数
while (leftIndex <= mid && rightIndex <= j) {
if (nums[leftIndex] <= nums[rightIndex]) {
total = total + rightIndex - (mid + 1);
leftIndex ++;
continue;
}else {
rightIndex++;
}
}
if(leftIndex <= mid) {
total = total + (mid - leftIndex + 1) * (rightIndex - mid - 1);
}
}
}
网上的做法,更好
/**
* 逆序对:
* 在数组中的两个数字如果前面一个数字大于后面一个数字,则这两个数字组成一个逆序对。
* 输入一个数组,求出这个数组中的逆序对的总数。
*/
package swordForOffer;
import java.util.ArrayList;
/**
* @author JInShuangQi
*
* 2015年8月9日
*/
public class E36InversePairs {
private ArrayList<Integer> assignList(ArrayList<Integer> list ,int start,int end){
ArrayList<Integer> des = new ArrayList<Integer>();
for(int i = start;i<end;i++){
des.add(list.get(i));
}
return des;
}
public long mergeTwoList(ArrayList<Integer> list,int start,int half,int end){
long count = 0;
ArrayList<Integer> tempLeft = assignList(list,start,half);
ArrayList<Integer> tempRight = assignList(list,half,end);
int leftIndex = 0;
int rightIndex = 0;
int index = start;
while(leftIndex < tempLeft.size() && rightIndex <tempRight.size()){
int temp1 = tempLeft.get(leftIndex);
int temp2 = tempRight.get(rightIndex);
if(temp1 > temp2){
count+=tempLeft.size() - leftIndex;
list.set(index, temp2);
index++;
rightIndex++;
}else{
list.set(index, temp1);
index++;
leftIndex++;
}
}
for(;leftIndex < tempLeft.size();leftIndex++){
list.set(index, tempLeft.get(leftIndex));
index++;
}
for(;rightIndex <tempRight.size();rightIndex++){
list.set(index, tempRight.get(rightIndex));
index++;
}
return count;
}
public long getInversions(ArrayList<Integer> list,int start,int end){
long count = 0;
if((end-start)<= 1)
return 0;
int half = start+(end-start)/2;
count += getInversions(list,start,half);
count += getInversions(list,half,end);
count += mergeTwoList(list,start,half,end);
return count;
}
public long getInversePairs(int[] arr){
ArrayList<Integer> al = new ArrayList<Integer>();
for(int i = 0;i<arr.length;i++){
al.add(arr[i]);
}
int end =arr.length;
return getInversions(al,0,end);
}
public static void main(String[] args){
int[] arr={7,5,6,4};
E36InversePairs test = new E36InversePairs();
System.out.println(test.getInversePairs(arr));
}
}
解法2(成功)
前面的数据塞入treeset,后面的数字,先塞入treeset,然后看比它大的数字有多少
package sword036;
import java.util.Set;
import java.util.TreeSet;
public class Solution {
public int inversePairs(int[] nums) {
int length = nums.length;
if (length == 0 || length == 1) {
return 0;
}
int result = 0;
TreeSet<Integer> set = new TreeSet<Integer>();
set.add(nums[0]);
for(int i=1;i<length;i++) {
set.add(nums[i]);
Set<Integer> greaterSet = set.tailSet(nums[i], false);
result = result + greaterSet.size();
}
return result;
}
}