期望线性性

每多一个1带来的贡献增值是:(x+1)^3-x^3=3*x^2+3*x+1,这里的x是前面已经累计的连续1的个数,而对于每一位的期望贡献就是p[i]*E(3*x^2+3*x+1)=p[i]*(3E(x^2)+3E(x)+1,在累加即得答案,所以这一要求得每一位的E(x^2)与E(x),

有递推:

x=x-1+1

E(x)=(E(x-1)+1)*p[i]

x^2=(x-1)^2+2*(x-1)+1

E(x^2)=(E((x-1)^2)+2*E(x-1)+1)*p[i]

写出一般等式,在求两边期望(这个取定1要补充个概率)

OSU! - 洛谷 

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int mod=998244353;
const int nn=1e5+50;
inline int read()
{
 int x=0,f=1;
 char c=getchar();
 while(c<'0'||c>'9') 
 {
  if(c=='-') f=-1;
  c=getchar();
 }
 while(c>='0'&&c<='9')
 {
  x=x*10+c-'0';
  c=getchar();
 }
 return x*f;
}
inline void write(int x)
{
 if(x<0) putchar('-'),x=-x;
 if(x>9) write(x/10);
 putchar(x%10+'0');
}
vector<pair<int,int>>a[nn];
queue<int>q;
double f[nn],g[nn];
double p[nn];
double ans[nn];
int main()
{
    int n;
    n=read();
    for(int i=1;i<=n;++i)
    {
        scanf("%lf",&p[i]);
    }
    for(int i=1;i<=n;++i)
    {
        f[i]=(f[i-1]+1.0)*p[i];
    }
    for(int i=1;i<=n;++i)
    {
        g[i]=(g[i-1]+2.0*f[i-1]+1.0)*p[i];
    }
    for(int i=1;i<=n;++i)
    {
        ans[i]=ans[i-1]+(3.0*g[i-1]+3.0*f[i-1]+1.0)*p[i];
    }
    ans[n]*=10;
    ans[n]=round(ans[n]);
    ans[n]/=10.0;
    printf("%.1lf",ans[n]);
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值