[学习笔记]期望线性性基础

本文章是[学习笔记]概率与期望进阶的一部分

基础知识
题目:Warm up 1

i-4p:
n n n个数编号 1 − n 1-n 1n,求随机取 m m m个数最大值的期望。

E ( X ) = ( 1 + n ) m m + 1 E(X)=(1+n)\frac{m}{m+1} E(X)=(1+n)m+1m
sol:
E ( X ) = ∑ i = m n ( m − 1 i − 1 ) i ( m n ) = m ∑ i = m n ( m i ) ( m n ) = m ( m + 1 n + 1 ) ( m n ) = ( n + 1 ) m m + 1 \begin{aligned} E(X)&=\frac{\sum^{n}_{i=m}\binom{m-1}{i-1}i}{\binom{m}{n}}\\ &=m\frac{\sum^{n}_{i=m}\binom{m}{i}}{\binom{m}{n}}\\ &=m\frac{\binom{m+1}{n+1}}{\binom{m}{n}}\\ &=(n+1)\frac{m}{m+1}\\ \end{aligned} E(X)=(nm)i=mn(i1m1)i=m(nm)i=mn(im)=m(nm)(n+1m+1)=(n+1)m+1m

ii-4.Math encoder (Code Jam Kickstart 2017 round B) You are given a sequence of N N N numbers ( N   ≤   2000 N ≤ 2000 N2000 or N   ≤   1 0 5 N ≤ 10^5 N105). We’re to choose one of 2 N   −   1 2^N - 1 2N1 non-empty subsets, uniformly at random. Find EV of the difference between the maximum and minimum element in the subset.
Equivalently: Find the sum over the difference over all subsets, and print the answer modulo 1 0 9   +   7 10^9 + 7 109+7.
从一个集合里面等概率选出一个非空子集,问 E [ M A X − M I N ] E[MAX-MIN] E[MAXMIN]

sol:
根据期望的线性性再分别求解即可
E ( M A X − M I N ) = E ( M A X ) − E ( M I N ) = ∑ i = 1 n a i × 2 i − 1 2 n − 1 − ∑ i = 1 n a i × 2 n − i 2 n − 1 \begin{aligned} E(MAX-MIN)&=E(MAX)-E(MIN)\\ &=\frac{\sum^{n}_{i=1}a_i\times 2^{i-1}}{2^n-1}-\frac{\sum^{n}_{i=1}a_i\times 2^{n-i}}{2^n-1}\\ \end{aligned} E(MAXMIN)=E(MAX)E(MIN)=2n1i=1nai×2i12n1i=1nai×2ni

6.Randomizer (CF 313 D) You’re given a convex polygon with N vertices ( N   ≤   2000 N ≤ 2000 N2000 or N   ≤   1 0 5 N ≤ 10^5 N105). We choose a random subset of vertices, what gives us a new (small) convex polygon. Find EV of the perimeter of the new polygon.
Well, the CF problem was a bit harder, with computing area and using Pick’s theorem.
给你个多边形,随机选一个子集,求组成新的多边形的期望周长

sol: O ( n 2 ) O(n^2) O(n2)
枚举一条边 ( i , j ) (i,j) (i,j),计算它在多边形上出现的概率乘权值即可:
∑ i ∑ j l e n × ( 1 2 ) 2 × ( 1 2 ) j − i − 1 \sum_{i}\sum_{j}len\times (\frac{1}{2})^2\times (\frac{1}{2})^{j-i-1} ijlen×(21)2×(21)ji1
O ( n ) O(n) O(n)
原题求内部整点个数:
根据Pick定理:S(网格图面积)=X(内部整点个数)+ b 2 \frac{b}{2} 2b(边上整点个数/2)-1
E [ X ] = E [ S ] − E [ b ] 2 + 1 E[X]=E[S]-\frac{E[b]}{2}+1 E[X]=E[S]2E[b]+1
于是成了求面积和边上整点期望。
面积我们使用叉积表示就好了。
因为输出double…因此太远的由于精度可以直接忽略…
[为什么之前我这样做都被卡了…]

8.Eating ends You’re given a sequence of length N ( N   ≤   2000 N ≤ 2000 N2000 or N   ≤   1 0 5 N ≤ 10^5 N105). N   −   1 N - 1 N1 times we will remove the first or the last element, each with p p p-bility 50 % 50\% 50%. Find EV of the last remaining number.
Well, the implementation is hard because of precision issues.
给你一个长度为 n n n的队列,每次等概率删除队头或队尾,问剩余的数的期望。

sol:
E [ X ] = ∑ i = 1 n a i × ( i − 1 n − 1 ) 2 n − 1 E[X]=\frac{\sum^{n}_{i=1}a_i\times \binom{i-1}{n-1}}{2^{n-1}} E[X]=2n1i=1nai×(n1i1)

CF280C Game on Tree

• 给出一棵含n个白点的有根树,每次随机选择一个还没有被染黑的节点,将这个节点和这个节点子树中的所有点染黑。
• 问期望操作多少次后所有点都被染黑。

由于期望的线性性,所有点都被染黑就等于每个点期望消耗操作次数。
一个点消耗操作次数当且仅当它到路径上的所有点都没被删因此期望为 1 d e p i \frac{1}{dep_i} depi1
综上:
E [ X ] = ∑ i = 1 n 1 d e p i E[X]=\sum^{n}_{i=1}\frac{1}{dep_i} E[X]=i=1ndepi1

CF1153F Serval and Bonus Problem

详细题解

• 给一个长度为 l l l的线段,随机选了 n n n条子线段,求至少被覆盖了k次的期望长度。
n ≤ 2000 n\leq 2000 n2000

使用微元法,然后再用定积分积起来…
E [ X ] = ∑ m ≤ k ∫ 0 1 ( n k ) ( 2 x × ( 1 − x ) ) k × ( 1 − 2 x × ( 1 − x ) ) n − k d x E[X]=\sum_{m\leq k}\int_0^1 \binom{n}{k}(2x\times (1-x))^k\times (1-2x\times (1-x))^{n-k} \mathrm{d}x E[X]=mk01(kn)(2x×(1x))k×(12x×(1x))nkdx

多项式积分: ∫ 0 1 x n = 1 n + 1 \int_0^1 x^n=\frac{1}{n+1} 01xn=n+11

于是我们将多项式暴力展开后积分…这东西可以用dp实现…
它还可以优化到 O ( n log ⁡ n ) O(n\log n) O(nlogn)

CF235D Graph Game

好神仙的思路…
分治FFT优化:CCPC-Wannafly Winter Camp Day2 A.Erase Nodes(不可能是有生之年系列)

Random

• 有个长度为n的排列,每次随机选择一对相邻逆序对,然后交换,代价是下标,问期望代价。

或许你看到的只是一个 字,但是它也需要迈出这一步的勇气:)

CTSC2013 没头脑与不高兴

详细题解
为什么要拿和我同类的人来当主人公呢

• 随机一个排列,指定若干个位置会排好序。问逆序对个数的期望。
• 每次会选择覆盖一个区间作为排好序的位置或者取消一段区间。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值