面相对象分析及UML类图

本文详细介绍了面向对象分析的方法,包括Peter Coad的面向对象方法,强调了对象的边界、属性和行为的封装。同时,讨论了常用的结构如继承和整体-部分关系,并阐述了服务建模中的瞬时、计算和监控服务。此外,文章还讲解了面向对象分析的常用术语,并通过CRC卡片分拣法识别和定义类的功能职责及交互关系。最后,深入探讨了类图建模,涵盖了类、对象、属性、关系等要素。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

面向对象分析方法举例:

常用结构:

服务建模:

面向对象的分析方法学:​

面向对象分析常用术语对照表:​

CRC卡片分拣法

类图建模


面向对象分析方法举例:

Peter Coad的面向对象方法:

  • 对象有“定义清晰的边界”
  • 对象中封装有属性和行为
  • 面向对象分析的五个核心概念:对象、属性、结构、服务、主题

常用结构:

  • 继承/一般-特殊结构:基于继承关系的分类层次结构
  • 整体-部分结构:用于描述对象间的组合关系

服务建模:

  • 瞬时服务
  • 计算服务
  • 监控服务
  • 在类图中用带箭头的虚线表示一个对象引用另一个对象的服务

面向对象的分析方法学:

面向对象分析常用术语对照表:

CRC卡片分拣法

  1. 过滤对象类
  2. 类筛选
  3. 类识别
  4. 识别类的功能职责
  5. 识别类交互协作关系

类图建模

  • 对象

  • 类属性定义

  • 类关系:

  1. 关联关系的种类(自返关联、二元关联、N元关联)、关联关系的维度、关联类

  2. 聚合和组合关系
  3. 继承/泛化关系
  • 类图建模风格

     

### Ollama Prompt 使用方法 Ollama 是种允许在个人设备上运行大型语言模型的技术,这使得开发者能够更方便地测试和部署各种应用。对于Prompt设计,其核心在于构建有效的输入字符串,以便让LLM理解并给出预期的回答。 为了有效使用Ollama Prompts,在设计提示语时应考虑以下几个方面: - **清晰度**:确保指令简洁明了。 - **上下文提供**:如果适用,给予足够的背景信息帮助模型更好地理解和回应请求。 - **具体化目标**:明确指出希望获得什么样的输出形式或内容范围[^1]。 #### 示例代码展示如何调用带有特定参数配置的OLLAMA API接口发送自定义prompt: ```python import requests def send_ollama_prompt(prompt_text, api_key="your_api_key"): url = "https://api.ollama.com/v1/completions" headers = { 'Content-Type': 'application/json', 'Authorization': f'Bearer {api_key}' } data = {"prompt": prompt_text} response = requests.post(url, json=data, headers=headers) return response.json() # 测试函数 if __name__ == "__main__": result = send_ollama_prompt("解释什么是量子计算?") print(result['choices'][0]['text']) ``` --- ### LangChain 整合教程 LangChain 提供了套完整的工具集来加速基于大语言模型的应用程序开发过程。通过引入链的概念,可以轻松组合多个处理单元形成复杂的工作流,从而简化应用程序逻辑的设计与实现。 要将 LangChain 集成到现有项目中,通常涉及以下几部分工作: - 安装必要的库文件并通过Poetry管理依赖关系。 - 构建适合应用场景的数据管道。 - 利用预置模块快速搭建基础架构。 - 自定义业务逻辑以满足特殊需求[^2]。 下面是个简单的例子,展示了怎样利用LangChain创建个基本的任务执行器,并将其应用于自然语言查询解析场景下: ```python from langchain import ConversationChain from langchain.prompts.prompt import PromptTemplate from langchain.chains.conversation.memory import ConversationBufferMemory template = """The following is a friendly conversation between a human and an AI. Human: {input} AI:""" prompt = PromptTemplate(input_variables=["input"], template=template) conversation_chain = ConversationChain( llm=None, # 替换为实际使用的LLM实例 memory=ConversationBufferMemory(), verbose=True, prompt=prompt ) response = conversation_chain.predict(input="你好,世界!") print(response) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值