来源
计算概论05
描述
有一种游戏,在纸上画有很多小方格,第一个方格为起点(S),最后一个方格为终点。有一个棋子,初始位置在起点上,棋子每次可移动一次,棋子在起点时,可向前移动一个格子到第二个方格内;棋子在其他方格内时,可根据方格内的数字Ni进行移动。如果Ni大于零,就向前移动Ni个格子;如果Ni小于零,就向后移动-Ni个格子;如果Ni等于零,则此次原地不动一次,在下一步移动时可向前移动一步到下一个格子。显然,如果仅按此方案,会出现棋子永远移动不到终点的情形。为防止这种情况发生,我们规定,当棋子再次来到它曾经到过的方格时,它需要原地不动一次,在下一步移动时可向前移动一步到下一个格子。按此方案,棋子总能够走到终点(F)。如果给定一个方格图,试求棋子要走多少步才能从起点走到终点。(注:当然还可能会出现向前移动Ni个格子就跑过终点了,则把棋子放到终点上。如果Ni太小,使得棋子向后移动跑过了起点,则把棋子放到起点上。)(如图所示,其中S代表起点,F代表终点)(只有离开后再次来到一个方格时,才算来到它曾经到过的方格,包括起点S)
关于输入
第一行为所有中间格子的总数n(n<20)(即加上起点小格子和终点小格子,共有n+2个小格子)。
其余各行上分别为一个整数,表示对应的小格子上的初始数字。
关于输出
输出一行,要从起点跳到终点,共要跳多少步。
(注:每跳一步,可能跳过多个格子,也可能原地不动。)
例子输入
5
2
3
-2
0
-5
例子输出
19
提示
只有离开后再次来到一个方格时,才算来到它曾经到过的方格,包括起点S
如果有疑问可再读一遍题干!
#include <stdio.h>
#include <math.h>
int main() {
int n;
scanf("%d\n", &n);//共有n+2个格子(加上起点和终点)
int i,j=0;
int a[22] = { 0 };//每个格子定义一个数(0-22)
for (i = 1; i <= n; i++) {
scanf("%d\n", &a[i]);
}
a[0] = 1;
int b[22] = { 0 };
int pos = 0;
int count = 0;
while (pos < n + 1) {
if (a[pos] == 0) {
pos++;
count += 2;
}
if (b[pos] == 0) {
b[pos] = 1;
pos += a[pos];
count++;
}
else {
pos += 1;
count += 2;
}
}
printf("%d\n", count);
return 0;
}