双目立体视觉数据集 Stereo dataset

本文介绍了四个主要的立体视觉数据集:MiddleburyStereo、KITTI、ETH3D和InStereo2K,涵盖了从室内到室外不同场景的数千对立体图像,是进行立体匹配算法研究与评估的重要资源。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Stereo dataset

1.Middlebury Stereo(室内场景, 几十对, 分辨率高)
2.KITTI(室外驾驶场景, 200对)
3.ETH3D(27 training and 20 test frames)
4.InStereo2K(室内场景, 2000 training and 50 test frames)

### 使用KITTI数据集实现三维重建的技术教程 #### 数据准备 为了利用KITTI数据集进行三维重建,首先需要从指定资源下载并解压所需的数据文件[^1]。该数据集包含了丰富的传感器数据,如立体图像、LiDAR点云等。 #### 环境配置 安装必要的软件库来处理这些多模态数据至关重要。对于Python开发者来说,OpenCV用于读取和预处理图片;NumPy与Pandas帮助管理数值型数组;Matplotlib有助于可视化中间结果;而Point Cloud Library(PCL)或是open3d则专攻于点云计算任务。 ```bash pip install opencv-python numpy pandas matplotlib open3d ``` #### 处理双目视觉输入 假设已经获得了同步拍摄的一对彩色图像作为输入,则可以通过计算视差图来进行初步的距离估计: ```python import cv2 import numpy as np def compute_disparity_map(img_left, img_right): stereo = cv2.StereoBM_create(numDisparities=16, blockSize=15) disparity = stereo.compute(cv2.cvtColor(img_left,cv2.COLOR_BGR2GRAY),cv2.cvtColor(img_right,cv2.COLOR_BGR2GRAY)) return disparity / 16. # 加载左右摄像头捕捉的画面帧 left_image = cv2.imread('path_to_kitti_dataset/left_0000.png') right_image = cv2.imread('path_to_kitti_dataset/right_0000.png') disparity_map = compute_disparity_map(left_image, right_image) plt.figure(figsize=(8,6)) plt.imshow(disparity_map,'gray') plt.title("Disparity Map from Stereo Images") plt.show() ``` 此部分操作基于双目视觉原理构建了基础的空间感知能力[^2]。 #### 结合LiDAR扫描成果 进一步提升精度的方法是引入来自Velodyne LiDAR设备采集到的精确位置信息。这一步骤涉及将时间戳匹配后的RGB-D(颜色加深度)数据融合起来创建更完整的场景模型。 ```python from pykitti import raw basedir = './data' date = '2011_09_26' # Date of recording drive = '0001' # Drive number dataset = raw(basedir, date, drive) for velo_scan in dataset.velo: points = np.array([[point[0], point[1], point[2]] for point in velo_scan]) pcd = o3d.geometry.PointCloud() pcd.points = o3d.utility.Vector3dVector(points[:,:3]) # 可选:绘制点云 o3d.visualization.draw_geometries([pcd]) ``` 上述代码片段展示了如何加载特定日期驱动序列中的所有可用LiDAR扫描,并将其转换成易于后续分析的形式。 #### 构建稠密三维地图 最后阶段的目标是从稀疏分布的观测值推断出整个环境内的连续表面特征。常用策略包括但不限于ICP(Iterative Closest Point迭代最近点法),TSDF(Tsigned Distance Function带符号距离函数)体积网格化等高级算法的应用。 ```python source_pcd = ... # 来源点云对象 target_pcd = ... # 目标点云对象 threshold = 0.02 trans_init = np.asarray([[1.,0.,0.,0.],[0.,1.,0.,0.],[0.,0.,1.,0.],[0.,0.,0.,1.]]) reg_p2p = o3d.pipelines.registration.registration_icp( source_pcd, target_pcd, threshold, trans_init, o3d.pipelines.registration.TransformationEstimationPointToPoint()) print(reg_p2p) draw_registration_result(source_pcd, target_pcd, reg_p2p.transformation) ``` 这段脚本实现了两个不同视角下获取的点云之间的刚体变换矩阵求解过程,从而使得它们能够被正确拼接在一起形成更大范围内的统一描述[^4]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值